理解机器学习中的潜在空间(Understanding Latent Space in Machine Learning)

在这里插入图片描述

1、什么是潜在空间?

If I have to describe latent space in one sentence, it simply means a representation of compressed data.

如果我必须用一句话来描述潜在空间,它只是意味着压缩数据的表示。

想象一个像上面所示的手写数字(0-9)的大型数据库。相同数字的手写图像(即3的图像)与其他不同数字的图像(即3s vs. 7s)相比,彼此之间最相似。但我们能训练一个算法来识别这些相似性吗?如何训练?

如果你训练了一个模型来对数字进行分类,那么你也训练了这个模型来学习图像之间的“结构相似性”。事实上,这就是模型如何首先能够对数字进行分类——通过学习每个数字的特征。

如果这个过程看起来对你来说是“隐藏”的,那是因为它是。Latent,顾名思义就是“隐藏的”。

“潜在空间”的概念很重要,因为它的用途是“深度学习”的核心——学习数据的特征并简化数据表示以寻找模式。

感兴趣吗?让我们一点一点地分解潜在空间:

① 为什么我们在机器学习(ML)中压缩数据?

数据压缩(Data compression)被定义为使用比原始表示更少的比特对信息进行编码的过程。这就像获取一个19D数据点(需要19个值来定义唯一的点)并将所有信息压缩到一个9D数据点中。

在这里插入图片描述

通常情况下,数据在机器学习中被压缩,以学习有关数据点的重要信息。让我举个例子来解释。

假设我们想训练一个模型来使用全卷积神经网络(FCN)对图像进行分类(即输出给定数字图像的数字)。当模型“学习”时,它只是学习每一层的特征(边、角度等),并将特征组合归因于特定的输出。

但每次模型通过一个数据点进行学习时,图像的维数首先会降低,然后才会最终增加(见下面的编码器和瓶颈)。当维数降低时,我们认为这是一种有损压缩。

在这里插入图片描述

因为模型需要重建压缩数据(参见解码器),它必须学会存储所有相关信息并忽略噪声。这就是压缩的价值——它允许我们去掉任何无关的信息,只关注最重要的特性。

这种“压缩状态”是我们数据的潜在空间表示。

② 空间(space)是什么意思?

你可能想知道为什么我们称它为潜在空间。毕竟,压缩的数据,乍一看,可能不会引起任何形式的“空间”。

但这里有个相似之处。

在这个相当简单的例子中,假设我们的原始数据集是尺寸为5×5×1的图像。我们将我们的潜在空间维度设置为3×1,这意味着我们压缩的数据点是一个具有3维的向量。

在这里插入图片描述

现在,每个压缩数据点仅由3个数字唯一定义。这意味着我们可以在三维平面上绘制这些数据(一个数字是x,另一个是y,另一个是z)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值