一个使用 latent space clustering model 和 NMF 进行Bicluster 聚类的实例

本文通过一个使用Davis数据集的例子,详细解释如何结合latent clustering model和非负矩阵分解(NMF)进行双聚类(biclustering)。利用R包latentnet和NMF进行分析,结果显示活动和消费者可以明显分为两类,NMF提供的结果更加清晰,验证了两种方法的一致性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

NMF = nonnegative matrix  factorization 


具体介绍请看拙文

使用NMF模型进行消费者行为分析


本文将举例介绍如何综合使用  latent clustering model 和 NMF 模型 对消费者进行聚类。


我们这次演示用的数据是 Davis 数据集, 这是个18 * 14 的小数据集, 每一行是一位女性,总共18位女性,每一列是一个活动,总共有14个活动。 每一个cell可以取1或者0, 取值之为1时,代表该行代表的女士参加了该列的活动。你可以把每个活动想象成不同的电影或者在不同的餐馆就餐。 这里有个关于使用latent clustering model的教程,也是使用的Davis 数据集。


以下是具体数据:




我们使用R package latentnet  进行聚类


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值