机器学习复习:浅析支持向量机(SVM)

本文详细介绍了支持向量机(SVM)的基本原理,包括其作为二元分类器的角色、如何通过寻找分离超平面进行分类、以及如何通过软间隔处理异常值。文章还探讨了SVM的对偶形式、KKT条件、SMO算法以及核方法,阐述了它们在SVM中的应用和重要性。此外,还提到了SVM在多分类、回归、聚类等问题上的扩展应用。
摘要由CSDN通过智能技术生成


注意:!!CSDN显示不太正确(latex环境部分不支持)
请移步博客园(同样是本人):浅析支持向量机(SVM)!!


brief introduction

information

​ 支持向量机(Support Vector Machine,以下简称SVM),是一个二元分类( dualistic classification)的广义线性分类器(generalized linear classifier),通过寻找分离超平面作为决策边界(decision boundary),分离少量的支持向量(support vector),从而达到分类目的 [ 1 ] [ 2 ] [ 3 ] [1][2][3] [1][2][3]

​ 可采用一对一(One Versus One)、一对多(One Versus Rest)等策略转变为多分类问题 [ 6 ] [6] [6]

​ 原问题(primal problem)仅支持硬间隔最大化(hard margin maximum),添加松弛变量(slack variable)后支持软间隔最大化(soft margin maximum)。


details

属性:稀疏性和稳健性(Robust) [ 1 ] [1] [1]、非参数模型(nonparametric models)、监督学习(supervised learning)、判别模型(discriminant model)、【KKT条件(Karush-Kuhn-Tucker condition)约束,对偶形式(dual form)转换,序列最小优化(Sequential Minimal Optimization,以下简称为SMO)算法求解 [ 1 ] [ 4 ] [ 5 ] [1][4][5] [1][4][5]】、支持核方法(kernel method)。

求解:使用门页损失函数(hinge loss function)计算经验风险(empirical risk)并在求解时加入了正则化项以优化结构风险(structural risk),1.直接进行二次规划(Quadratic Programming)求解;2.利用拉格朗日算子( Lagrange multipliers),将其转为,符合KKT条件(Karush-Kuhn-Tucker condition)的对偶形式(dual form),再进行二次规划(Quadratic Programming)求解 [ 1 ] [1] [1]

扩展:利用正则化、概率学、结构化、核方法改进算法,包括偏斜数据、概率SVM、最小二乘SVM(Least Square SVM, LS-SVM)、结构化SVM(structured SVM)、多核SVM(multiple kernel SVM);也可扩充到回归(Support Vector Regression)、聚类、半监督学习(Semi-Supervised SVM, S3VM)。


problems

  • generalized formula:
    • 间隔距离(support vector distance):最优解时,值等于 2 ∥ w ∥ \frac{2}{\| w \|} w2;
    • 分割线-原点垂直距离: 最优解时,值等于 b ∥ w ∥ \frac{b}{\| w \|} wb;
    • 简单推导:
      • s   v   d i s t a n c e   : { W T x i + + b = 1 W T x i + b = 0 W T x i − + b = − 1 ↓ { W T ( x i − x j ) = 0 → W ⊥ ( x i − x j ) W ∥ ( x + − x − ) → x + = x − + λ W W T x + + b = 1 → λ W T W = 2 ,   ∣ λ ∣ = 2 ∣ W T W ∣ ↓ m a x i m i z e    ∥ x + − x − ∥ → ∥ x + − x − ∥ = ∥ λ W ∥ = 2 ∥ W ∥ \color{black}{s\,v\,distance\,:} \begin{aligned} &\begin{cases} W^{\rm{T}}x_i^++b=1\\ W^{\rm{T}}x_i+b=0\\ W^{\rm{T}}x_i^-+b=-1\\ \end{cases} \\ &\downarrow \\ &\begin{cases} W^{\rm{T}}(x_i-x_j)= 0 &\rightarrow W\bot (x_i-x_j)\\ W\| (x^+-x^-) &\rightarrow x^+=x^-+\lambda W\\ W^{\rm{T}}x^++b=1 &\rightarrow \lambda W^{\rm{T}}W=2, \,|\lambda| =\frac{2}{|W^{\rm{T}}W|}\\ \end{cases} \\ &\downarrow \\ &maximize\;\|x^+-x^-\| \\ &\rightarrow \|x^+-x^-\| = \|\lambda W\|=\frac{2}{\|W\|} \end{aligned} svdistance:WTxi++b=1WTxi+b=0WTxi+b=1WT(xixj)=0W(x+x)WTx++b=1W(x
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值