1. 求 所 有 满 足 σ ( n ) + ϕ ( n ) = 2 n 1.求所有满足\sigma(n) + \phi(n) = 2n 1.求所有满足σ(n)+ϕ(n)=2n
解:
设
n
=
p
1
a
1
p
2
a
2
.
.
.
p
t
a
t
n = p_{1}^{a_1}p_{2}^{a_2}...p_{t}^{a_t}
n=p1a1p2a2...ptat
σ ( n ) + ϕ ( n ) \sigma(n) + \phi(n) σ(n)+ϕ(n)
= ∏ k = 1 t ( 1 + p k + p k 2 + . . . + p k a k ) + ∏ k = 1 t ( p k a k − p k a k − 1 ) = \prod_{k = 1}^{t}(1 + p_{k} + p_{k}^2 + ... + p_{k}^{a_k}) +\prod_{k = 1}^{t}(p_{k}^{a_k} - p_{k}^{a_k - 1}) =∏k=1t(1+pk+pk2+...+pkak)+∏k=1t(pkak−pkak−1)
∵ \because ∵ 其中第二项里的负项,必在第一项里可以找到相应的正项
∴ σ ( n ) + ϕ ( n ) ≥ 2 n \therefore \sigma(n) + \phi(n) \ge 2n ∴σ(n)+ϕ(n)≥2n
∵ \because ∵ 当不同素数因子多于 1 1 1或者幂数大于 1 1 1则 σ ( n ) + ϕ ( n ) > 2 n \sigma(n) + \phi(n) \gt 2n σ(n)+ϕ(n)>2n
∴ p r i m e ( n ) = T r u e \therefore prime(n) = True ∴prime(n)=True
σ ( p ) + ϕ ( p ) = ( 1 + p ) = ( p − 1 ) = 2 p \sigma(p) + \phi(p) = (1 + p) = (p - 1) = 2p σ(p)+ϕ(p)=(1+p)=(p−1)=2p
2. 2. 2.证明: 不存在两个正整数具有相同的因子之积.
证:
n = p 1 a 1 p 2 a 2 . . . p t a t , m = p 1 b 1 p 2 b 2 . . . p t b t n = p_{1}^{a_1}p_{2}^{a_2}...p_{t}^{a_t}, m = p_{1}^{b_1}p_{2}^{b_2}...p_{t}^{b_t} n=p1a1p2a2...ptat,m=p1b1p2b2...ptbt
f ( n ) = ∏ d ∣ n d f(n) = \prod_{d|n}d f(n)=∏d∣nd
设 a , b ∈ Z + , ( a , b ) = 1 a, b \in Z_+, (a, b) = 1 a,b∈Z+,(a,b)=1
f ( a b ) = ∏ d ∣ a b d = ∏ d 1 ∣ a , d 2 ∣ b d 1 d 2 f(ab) = \prod_{d|ab}d = \prod_{d_1|a, d_2|b}d_1d_2 f(ab)=∏d∣abd=∏d1∣a,d2∣bd1d2
= ∏ d 1 ∣ a ( d 1 τ ( b ) ∏ d 2 ∣ b d 2 ) =\prod_{d_1|a}(d_1^{\tau(b)}\prod_{d_2|b}d_2) =∏d1∣a(d1τ(b)∏d2∣bd2)
= f ( a ) τ ( b ) f ( b ) τ ( a ) =f(a)^{\tau(b)}f(b)^{\tau(a)} =f(a)τ(b)f(b)τ(a)
又
∵ f ( n = p t ) = ∏ i = 0 t p i = p t ( t + 1 ) 2 = n τ ( n ) 2 \because f(n = p^t) = \prod_{i = 0}^{t}p^i = p^{\frac{t(t+1)}{2}} = n^{\frac{\tau(n)}{2}} ∵f(n=pt)=∏i=0tpi=p2t(t+1)=n2τ(n)
∴ f ( n = p 1 a 1 p 2 a 2 ) \therefore f(n = p_{1}^{a_1}p_{2}^{a_2}) ∴f(n=p1a1p2a2)
= f ( p 1 a 1 ) τ ( p 2 a 2 ) f ( p 2 a 2 ) τ ( p 1 a 1 ) =f(p_{1}^{a_1})^{\tau(p_{2}^{a_2})}f(p_{2}^{a_2})^{\tau(p_{1}^{a_1})} =f(p1a1)τ(p2a2)f(p2a2)τ(p1a1)
= p 1 a 1 τ ( p 1 a 1 ) 2 τ ( p 2 a 2 ) p 2 a 2 τ ( p 2 a 2 ) 2 τ ( p 1 a 1 ) =p_{1}^{a_1\frac{\tau(p_1^{a_1})}{2}{\tau(p_{2}^{a_2})}}p_{2}^{a_2\frac{\tau(p_2^{a_2})}{2}{\tau(p_{1}^{a_1})}} =p1a12τ(p1a1)τ(p2a2)p2a22τ(p2a2)τ(p1a1)
= ( p 1 a 1 p 2 a 2 ) τ ( p 1 a 1 ) τ ( p 2 a 2 ) 2 =(p_{1}^{a_1}p_{2}^{a_2})^{\frac{\tau(p_1^{a_1})\tau(p_2^{a_2})}{2}} =(p1a1p2a2)2τ(p1a1)τ(p2a2)
= n τ ( n ) 2 =n^{\frac{\tau(n)}{2}} =n2τ(n)
猜想: f ( n ) = ∏ d ∣ n d = n τ ( n ) 2 f(n) = \prod_{d|n}d = n^{\frac{\tau(n)}{2}} f(n)=∏d∣nd=n2τ(n)
基础步骤
n
=
1
,
2
⇒
f
(
n
)
=
n
τ
(
n
)
2
n = 1, 2 \Rightarrow f(n) = n^{\frac{\tau(n)}{2}}
n=1,2⇒f(n)=n2τ(n)
归纳步骤
t ≤ k , k ∈ Z + ⇒ f ( n ) = n τ ( n ) 2 t \le k, k \in Z_+ \Rightarrow f(n) = n^{\frac{\tau(n)}{2}} t≤k,k∈Z+⇒f(n)=n2τ(n)
f ( n , t = k + 1 ) = f ( p 1 a 1 p 2 a 2 . . . p k a k p k + 1 a k + 1 ) f(n, t =k + 1) = f(p_{1}^{a_1}p_{2}^{a_2}...p_{k}^{a_k}p_{k+1}^{a_{k+1}}) f(n,t=k+1)=f(p1a1p2a2...pkakpk+1ak+1)
= f ( ( p 1 a 1 p 2 a 2 . . . p k a k ) p k + 1 a k + 1 ) = f((p_{1}^{a_1}p_{2}^{a_2}...p_{k}^{a_k})p_{k+1}^{a_{k+1}}) =f((p1a1p2a2...pkak)pk+1ak+1)
= f ( p 1 a 1 p 2 a 2 . . . p k a k ) τ ( p k + 1 a k + 1 ) f ( p k + 1 a k + 1 ) τ ( p 1 a 1 p 2 a 2 . . . p k a k ) = f(p_{1}^{a_1}p_{2}^{a_2}...p_{k}^{a_k})^{\tau(p_{k+1}^{a_{k+1}})}f(p_{k+1}^{a_{k+1}})^{\tau(p_{1}^{a_1}p_{2}^{a_2}...p_{k}^{a_k})} =f(p1a1p2a2...pkak)τ(pk+1ak+1)f(pk+1ak+1)τ(p1a1p2a2...pkak)
= ( p 1 a 1 p 2 a 2 . . . p k a k ) τ ( p 1 a 1 p 2 a 2 . . . p k a k ) τ ( p k + 1 a k + 1 ) 2 ( p k + 1 a k + 1 ) τ ( p 1 a 1 p 2 a 2 . . . p k a k ) τ ( p k + 1 a k + 1 ) =(p_{1}^{a_1}p_{2}^{a_2}...p_{k}^{a_k})^{\frac{\tau(p_{1}^{a_1}p_{2}^{a_2}...p_{k}^{a_k})\tau(p_{k+1}^{a_{k+1}})}{2}}(p_{k+1}^{a_{k+1}})^{\tau(p_{1}^{a_1}p_{2}^{a_2}...p_{k}^{a_k})\tau(p_{k+1}^{a_{k+1}})} =(p1a1p2a2...pkak)2τ(p1a1p2a2...pkak)τ(pk+1ak+1)(pk+1ak+1)τ(p1a1p2a2...pkak)τ(pk+1ak+1)
= ( p 1 a 1 p 2 a 2 . . . p k a k ) τ ( n ) 2 ( p k + 1 a k + 1 ) τ ( n ) 2 =(p_{1}^{a_1}p_{2}^{a_2}...p_{k}^{a_k})^{\frac{\tau(n)}{2}}(p_{k+1}^{a_{k+1}})^{\frac{\tau(n)}{2}} =(p1a1p2a2...pkak)2τ(n)(pk+1ak+1)2τ(n)
= n τ ( n ) 2 = n^{\frac{\tau(n)}{2}} =n2τ(n)
若 a 1 = b 1 , . . . , a k < b k a_1 = b_1, ..., a_k < b_k a1=b1,...,ak<bk,即最先在 k ∈ [ 1 , t ] k \in [1, t] k∈[1,t]位置不等,不失一般性,设 a k < b k a_k < b_k ak<bk
∴ p k a k τ ( n ) 2 = p k b k τ ( m ) 2 \therefore p_k^{\frac{a_k\tau(n)}{2}} = p_k^{\frac{b_k\tau(m)}{2}} ∴pk2akτ(n)=pk2bkτ(m)
∴ a k τ ( n ) = b k τ ( m ) \therefore a_k\tau(n) = b_k\tau(m) ∴akτ(n)=bkτ(m)
∵ a k < b k \because a_k < b_k ∵ak<bk
∴ τ ( n ) > τ ( m ) \therefore \tau(n) > \tau(m) ∴τ(n)>τ(m),式 α \alpha α
对于 i ≠ k i \ne k i=k,同样有 a i τ ( n ) = b i τ ( m ) → a i < b i a_i\tau(n) = b_i\tau(m) \rightarrow a_i < b_i aiτ(n)=biτ(m)→ai<bi
∴ k = 1 \therefore k = 1 ∴k=1,且 ∀ i ∈ [ 1 , t ] a i < b i \forall_{i \in [1, t]}a_i < b_i ∀i∈[1,t]ai<bi
∴ τ ( n ) < τ ( m ) \therefore \tau(n) < \tau(m) ∴τ(n)<τ(m),与上面的式 α \alpha α矛盾,因此
∀ i ∈ [ 1 , t ] a i = b i \forall_{i \in [1, t]}a_i = b_i ∀i∈[1,t]ai=bi
∴ n = m \therefore n = m ∴n=m