系列博客目录
文章目录
在深度学习领域,F1-score 是一种常用的评价指标,尤其在不平衡数据集中,能够更好地反映模型的性能。它是 Precision(精确率) 和 Recall(召回率) 的调和平均数,综合考虑了模型预测的准确性和覆盖率。
公式:
F
1
=
2
×
Precision
×
Recall
Precision
+
Recall
F1 = 2 \times \frac{\text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}
F1=2×Precision+RecallPrecision×Recall
其中:
- Precision(精确率) = 真正类预测数 / 被预测为正类的总数
- Recall(召回率) = 真正类预测数 / 实际正类的总数
例子:
假设你有一个分类模型在猫狗识别的任务中,目标是识别出所有的猫。对于某一批次的测试数据,模型做出如下预测结果:
- 真实正类(猫)数量:100
- 模型预测为正类的数量(猫):90
- 其中真正类(猫)预测正确:80
计算:
- Precision = 80 / 90 = 0.89
- Recall = 80 / 100 = 0.80
接下来,计算 F1-score:
F
1
=
2
×
0.89
×
0.80
0.89
+
0.80
≈
0.84
F1 = 2 \times \frac{0.89 \times 0.80}{0.89 + 0.80} \approx 0.84
F1=2×0.89+0.800.89×0.80≈0.84
F1-score 在 0 到 1 之间,越接近 1 表明模型在 Precision 和 Recall 方面的表现越好。在这个例子中,模型的 F1-score 为 0.84,表明它在正确识别猫的同时也较好地避免了误报。