Deep Learning 最优化方法之Adam

本文是Deep Learning 之 最优化方法系列文章的Adam方法。主要参考Deep Learning 一书。

整个优化系列文章列表:

Deep Learning 之 最优化方法

Deep Learning 最优化方法之SGD

Deep Learning 最优化方法之Momentum(动量)

Deep Learning 最优化方法之Nesterov(牛顿动量)

Deep Learning 最优化方法之AdaGrad

Deep Learning 最优化方法之RMSProp

Deep Learning 最优化方法之Adam

先上结论:

1.Adam算法可以看做是修正后的Momentum+RMSProp算法

2.动量直接并入梯度一阶矩估计中(指数加权)

3.Adam通常被认为对超参数的选择相当鲁棒

4.学习率建议为0.001

再看算法:其实就是Momentum+RMSProp的结合,然后再修正其偏差。
这里写图片描述

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值