本文是Deep Learning 之 最优化方法系列文章的Nesterov(牛顿动量)方法。主要参考Deep Learning 一书。
整个优化系列文章列表:
Deep Learning 最优化方法之Momentum(动量)
先上结论:
1.
本文深入探讨了Nesterov动量法在深度学习最优化中的应用,作为Momentum的一个变种,它通过在计算梯度前先使用当前速度更新参数,引入了矫正因子,从而在梯度下降法中提高了误差收敛速度。然而,在随机梯度下降法(SGD)中,Nesterov并未展现出优势。
本文是Deep Learning 之 最优化方法系列文章的Nesterov(牛顿动量)方法。主要参考Deep Learning 一书。
整个优化系列文章列表:
Deep Learning 最优化方法之Momentum(动量)
先上结论:
1.
953
6809
5623

被折叠的 条评论
为什么被折叠?