【论文阅读】LLM撰写长文!《Assisting in Writing Wikipedia-like Articles From Scratch with Large Language Models》

这篇论文非常有意思,也非常有用,讲述了如何利用LLM撰写高质量的长篇文章。
https://arxiv.org/html/2402.14207v2
项目:github.com/stanford-oval/storm
Demo:storm.genie.stanford.edu

在这里插入图片描述
摘要:
我们研究了如何应用大型语言模型来从头开始撰写有根据的、有组织的长篇文章,其广度和深度可与 Wikipedia 页面相媲美。这个尚未被充分探索的问题在写作前阶段提出了新的挑战,包括如何研究主题以及在写作前准备大纲。
我们提出了 STORM,一个写作系统,用于通过检索和多角度提问来合成主题大纲。STORM 通过以下方式模拟写作前阶段:(1) 在研究给定主题时发现不同的视角,(2) 模拟对话,其中带有不同视角的写作者向基于互联网可信来源的主题专家提出问题,(3) 策划收集到的信息以创建大纲。
为了评估,我们策划了 FreshWiki,一个包含最近高质量 Wikipedia 文章的数据集,并制定了大纲评估标准来评估写作前阶段。我们还收集了经验丰富的 Wikipedia 编辑的反馈。与由大纲驱动的检索增强型基线生成的文章相比,STORM 的文章在组织性方面被认为更有序(绝对增加了 25%),在覆盖范围方面更广泛(增加了 10%)。
专家反馈还帮助我们识别了生成有根据的长篇文章方面的新挑战,例如来源偏见转移和无关事实的过度关联。

背景

作者设定了研究的背景,介绍了 STORM 系统,以及如何通过模拟人类写作过程的前期阶段来提高自动生成 Wikipedia 类文章的质量。主要讨论了以下几个方面:

  • 写作挑战: 作者指出,使用大型语言模型(LLMs)从头开始撰写类似于 Wikipedia 的长篇文章存在挑战,尤其是在写作前的准备阶段,这包括如何对主题进行研究以及如何准备文章大纲。

  • 现有方法的局限性: 作者讨论了直接提示(Direct

### DeepSeek LLM及其长期主义扩展开源语言模型的最佳实践 #### 概述 DeepSeek作为一个致力于开发先进的人工智能解决方案的企业,其大型语言模型LLM)旨在通过创新的技术手段实现更高效、更具影响力的自然语言处理能力。为了推动这一目标,在实践中采用了多种策略和技术来优化和扩展开源语言模型。 #### 长期主义视角下的模型扩展方法 对于希望采用长期主义原则扩展开源语言模型的研究者而言,可以借鉴如下几种方式: - **持续的数据更新机制**:保持训练语料库的新鲜度至关重要。定期引入新的高质量数据集有助于提升模型的理解能力和表达多样性[^4]。 - **模块化架构设计**:构建易于维护升级的系统结构,使得各个组件之间解耦合良好,便于单独迭代改进不同部分而不影响整体稳定性[^2]。 - **社区驱动的发展模式**:鼓励全球范围内的贡献者参与进来共同完善项目生态;这不仅限于代码层面还包括文档编、测试反馈等方面的工作[^1]。 #### 实施细节与最佳实践建议 当具体实施上述理念时,应考虑以下几个方面: - **资源分配规划**:合理安排计算资源用于实验探索与生产部署之间的平衡;优先支持那些具有潜力带来显著收益的方向进行深入研究[^3]。 - **性能监控体系建立**:设立完善的指标跟踪框架以便及时发现潜在瓶颈所在,并据此调整算法参数或硬件配置以求得最优性价比表现。 - **安全性和隐私保护措施加强**:随着模型规模不断扩大,确保用户信息安全成为不可忽视的任务之一。采取加密传输协议、匿名化处理敏感信息等手段有效降低风险隐患。 ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer def load_model(model_name="deepseek/llm"): tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) return model, tokenizer model, tokenizer = load_model() print("Model loaded successfully.") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

bylander

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值