【论文阅读】LLM撰写长文!《Assisting in Writing Wikipedia-like Articles From Scratch with Large Language Models》

这篇论文非常有意思,也非常有用,讲述了如何利用LLM撰写高质量的长篇文章。
https://arxiv.org/html/2402.14207v2
项目:github.com/stanford-oval/storm
Demo:storm.genie.stanford.edu

在这里插入图片描述
摘要:
我们研究了如何应用大型语言模型来从头开始撰写有根据的、有组织的长篇文章,其广度和深度可与 Wikipedia 页面相媲美。这个尚未被充分探索的问题在写作前阶段提出了新的挑战,包括如何研究主题以及在写作前准备大纲。
我们提出了 STORM,一个写作系统,用于通过检索和多角度提问来合成主题大纲。STORM 通过以下方式模拟写作前阶段:(1) 在研究给定主题时发现不同的视角,(2) 模拟对话,其中带有不同视角的写作者向基于互联网可信来源的主题专家提出问题,(3) 策划收集到的信息以创建大纲。
为了评估,我们策划了 FreshWiki,一个包含最近高质量 Wikipedia 文章的数据集,并制定了大纲评估标准来评估写作前阶段。我们还收集了经验丰富的 Wikipedia 编辑的反馈。与由大纲驱动的检索增强型基线生成的文章相比,STORM 的文章在组织性方面被认为更有序(绝对增加了 25%),在覆盖范围方面更广泛(增加了 10%)。
专家反馈还帮助我们识别了生成有根据的长篇文章方面的新挑战,例如来源偏见转移和无关事实的过度关联。

背景

作者设定了研究的背景,介绍了 STORM 系统,以及如何通过模拟人类写作过程的前期阶段来提高自动生成 Wikipedia 类文章的质量。主要讨论了以下几个方面:

  • 写作挑战: 作者指出,使用大型语言模型(LLMs)从头开始撰写类似于 Wikipedia 的长篇文章存在挑战,尤其是在写作前的准备阶段,这包括如何对主题进行研究以及如何准备文章大纲。

  • 现有方法的局限性: 作者讨论了直接提示(Direct

智能网联汽车的安全员高级考试涉及多个方面的专业知识,包括但不限于自动驾驶技术原理、车辆传感器融合、网络安全防护以及法律法规等内容。以下是针对该主题的一些核心知识解析: ### 关于智能网联车安全员高级考试的核心内容 #### 1. 自动驾驶分级标准 国际自动机工程师学会(SAE International)定义了六个级别的自动驾驶等级,从L0到L5[^1]。其中,L3及以上级别需要安全员具备更高的应急处理能力。 #### 2. 车辆感知系统的组成与功能 智能网联车通常配备多种传感器,如激光雷达、毫米波雷达、摄像头和超声波传感器等。这些设备协同工作以实现环境感知、障碍物检测等功能[^2]。 #### 3. 数据通信与网络安全 智能网联车依赖V2X(Vehicle-to-Everything)技术进行数据交换,在此过程中需防范潜在的网络攻击风险,例如中间人攻击或恶意软件入侵[^3]。 #### 4. 法律法规要求 不同国家和地区对于无人驾驶测试及运营有着严格的规定,考生应熟悉当地交通法典中有关自动化驾驶部分的具体条款[^4]。 ```python # 示例代码:模拟简单决策逻辑 def decide_action(sensor_data): if sensor_data['obstacle'] and not sensor_data['emergency']: return 'slow_down' elif sensor_data['pedestrian_crossing']: return 'stop_and_yield' else: return 'continue_driving' example_input = {'obstacle': True, 'emergency': False, 'pedestrian_crossing': False} action = decide_action(example_input) print(f"Action to take: {action}") ``` 需要注意的是,“同学”作为特定平台上的学习资源名称,并不提供官方认证的标准答案集;建议通过正规渠道获取教材并参加培训课程来准备此类资格认证考试
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

bylander

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值