【自然资源】搞懂DEM、DTM、DSM、DOM、TDOM的联系与区别,过来看看

搞懂DEM、DTM、DSM、DOM、TDOM的联系与区别,过来看看

在2021自然资源部发布的《实景三维中国建设技术大纲(2021版)》中,空间数据部分包括“数字高程模型(DEM)、数字地形模型(DTM)、数字表面模型(DSM)、数字正射影像(DOM)、数字真正射影像(TDOM)、倾斜摄影三维模型、激光点云”。DEM、DSM、DOM、TDOM在地理信息系统(GIS)和遥感技术中扮演着重要角色,那它们之间的关系是什么呢?

在这里插入图片描述

DEM(数字高程模型)

(1)定义DEM是通过有限的地形高程数据实现对地面地形的数字化模拟,即用一组有序数值阵列形式表示地面高程的一种实体地面模型。它是数字地形模型(DTM)的一个分支,专门用于描述地面高程信息。
(2)特点 精度恒定:DEM采用数字媒介,能够保持原有精度,并通过DEM进行生产,输出图件的精度可得到控制。表达多样:可产生多种比例尺的地形图、剖面图、立体图、明暗等高线图等,通过纹理映射、与遥感影像数据叠加,还能逼真地再现三维地形景观。更新实时:由于是数字的,增加或修改的信息只在局部进行,并由计算机自动完成,保证了地图信息的实时性。尺度综合:较大比例尺、较高分辨率的DEM自动覆盖较小比例尺、较低分辨率的DEM所包含的内容。
(3)应用DEM在测绘、水文、气象、地貌、地质、土壤、工程建设、通讯、军事等多个领域有广泛应用。例如,在工程建设中,可用于土方量计算、通视分析等;在防洪减灾方面,是进行水文分析的基础。 在这里插入图片描述

DTM(数字地形模型)

(1)定义DTM是一个表示地面特征空间分布的数据库,一般用一系列地面点坐标(x,y,z)及地表属性(目标类别、特征等)组成数据阵列,以此组成数字地面模型。它着重于描述裸露地表的地形特征,排除了建筑物、植被等非自然地形元素的影响。当仅考虑高程信息时,DTM可以视为数字高程模型(DEM)的一种特殊形式。
(2)特点Ø高精度和高分辨率:DTM能够基于高精度的地形数据构建,提供详细且准确的地形信息,包括高程、坡度、坡向等,有助于进行精确的地形分析和模拟。 三维可视化:DTM以三维形式展示地形,使得用户可以直观地查看和分析地形特征,便于进行空间分析和决策支持。广泛的应用领域:DTM在地理信息系统(GIS)、城市规划、环境研究、军事应用、土木工程、水文学、地质学等多个领域都有广泛的应用,为这些领域的研究和决策提供了有力的支持。支持复杂地形:DTM能够处理复杂的地形特征,如山地、丘陵、河流等,通过高精度的地形数据和高分辨率的模型构建,能够准确反映地形的真实情况。便于数据共享和集成:DTM数据通常以数字形式存储,便于在不同系统之间进行数据共享和集成,有助于实现跨领域的数据整合和分析。
(3)应用由于DTM排除了非自然地形元素的影响,它更适用于需要精确地形信息的领域。例如,在土地利用规划、基础设施建设、地质应用、洪水或排水建模等方面,DTM能够提供准确的地形数据支持。此外,DTM还可以用于地貌模拟、环境建模、城市规划中的地形分析等方面。
在这里插入图片描述

DSM(数字地表模型)

(1)定义 DSM是数字地表模型的英文简称(Digital Surface Model),DSM是一个包含了地表建筑物、桥梁和树木等高度的地面高程模型。它不仅包含了地形的高程信息,还涵盖了地表上所有物体的最高点信息,如建筑物、植被等。因此,DSM能够更真实地反映地面的起伏情况,包括自然地形和人造结构。
(2)特点Ø包含了自然地物和人工地物的高程值的集合。由于人工和自然地物相对来说变化较大,所以它反映的形态相对来说不太稳定。可用于生成DEM,当从DSM高程数据中去除植被和人造要素时,会生成一个DEM。
(3)应用DSM在电信、城市规划和航空领域的三维建模中有重要应用。例如,在航空领域,DSM可以确定跑道进近区内的障碍物;在城市规划中,DSM可用于检查拟建建筑对居民和企业视线的影响。
在这里插入图片描述

DOM(数字正射影像图)

(1)定义DOM是基于DEM对航空相片或卫星遥感影像进行数字微分纠正、镶嵌拼接和匀色等操作后,按照一定范围裁剪生成的数字正射影像图。它同时具有地图几何精度和影像特征。
(2)特点 几何精度高,经过严格的数学纠正,消除了因地形起伏和传感器姿态变化等因素引起的像点位移。信息丰富,保留了影像的丰富色彩和纹理信息,直观性强,易于被用户接受。
(3)应用DOM广泛应用于地图分析、城市规划、环境监测等多个领域。它提供高精度信息,可作为地图分析背景控制信息,也可从中提取自然资源和社会经济发展的历史信息或最新信息。

在这里插入图片描述

TDOM(数字真正射影像图)

(1)定义
TDOM是在DOM的基础上进一步发展的产物,它基于DSM利用数字微分纠正技术,改正了原始影像的几何变形所得的全正射影像。TDOM不仅保持了DOM的几何精度和影像特征,还融入了DSM中的高程信息,使影像中的每个像素与地表位置的对应更加准确。
(2)特点 更高精度,由于基于DSM进行纠正,TDOM能够更准确地反映地表形态,包括建筑物、树木等的高度信息。消除地形误差,使影像中的地物只呈现顶面正投,其他面不可见。
(3)应用
TDOM在需要高精度地表形态信息的领域具有更高的应用价值,如:·三维建模:为三维建模提供精确的地形和地物信息。·城市规划:在三维城市规划中提供准确的城市地形和建筑信息。·资源调查:在资源调查中提供高精度的地表覆盖信息。

数据获取方式

(1)数字高程模型(DEM)- 美国地质调查局(USGS):提供美国境内的DEM数据,如NED(National Elevation Dataset)。- 欧洲空间局(ESA):通过哥白尼计划提供覆盖欧洲的DEM数据。- NASA’s Earth Observing Data and Information System (EOSDIS):提供全球范围内的DEM数据,如SRTM(Shuttle Radar Topography Mission)。- CGIAR-CSI:提供全球的SRTM 90m DEM数据。- Viewfinder Panoramas:提供高山地区的高分辨率DEM数据。
(2)数字地形模型(DTM)- 政府地质和地形机构:许多国家的地质和地形机构提供DTM数据。- Esri:通过ArcGIS Online提供DTM数据。- QGIS:通过插件如DEM Explorer获取DTM数据。
(3)数字表面模型(DSM)- 商业卫星数据提供商:如DigitalGlobe和Airbus Defence and Space提供高分辨率的DSM。 - OpenTopography:提供多种高分辨率的DSM数据。- 地方和国家测绘机构:可能提供特定区域的DSM数据。
(4) 数字正射影像图(DOM)- 美国地质调查局(USGS):提供DOM数据。- 国家测绘机构:许多国家的测绘机构提供DOM数据。- Esri:通过ArcGIS Online提供DOM数据。- 商业卫星图像提供商:如DigitalGlobe和Planet Labs提供DOM数据。(5)数字真正射影像图(TDOM)- NASA’s Earth Observing System Data and Information System (EOSDIS):提供热红外数据。- 商业卫星图像提供商:可能提供热红外影像,如DigitalGlobe的WorldView系列。获取方式的通用途径:- 官方网站:访问相关政府机构或组织的官方网站,查找数据下载部分。- 地理空间数据平台:如OpenTopography、GeoPortal等提供多种空间数据的下载。- 商业数据提供商:通过订购或购买获取高分辨率的数据。- 学术和研究机构:部分大学和研究机构可能提供特定区域的免费数据。在获取这些数据时,需要注意数据的分辨率、覆盖范围、版权和使用许可以及更新日期。不同的应用需求可能需要不同类型和分辨率的空间数据。

在这里插入图片描述

整理总结

(1)数字高程模型(DEM)摄影测量处理:使用无人机搭载的高分辨率相机捕获地面图像,通过摄影测量软件(如Pix4Dmapper、Agisoft Photoscan、DroneDeploy等)处理这些图像,生成DEM。激光雷达(LiDAR)扫描:搭载激光雷达系统的无人机可以精确测量地面点的三维坐标,进而生成高精度的DEM。(2)数字地形模型(DTM)地面控制点:在无人机飞行前,设置地面控制点,以提供精确的地理参考。数据处理:使用摄影测量软件处理无人机图像,提取地形信息,生成DTM。
(3)数字表面模型(DSM)多角度摄影:无人机从多个角度拍摄地面,以捕捉地表物体(如建筑物、树木等)的顶部信息。软件生成:通过摄影测量软件处理图像,生成包含地表物体高度的DSM。
(4)数字正射影像图(DOM)垂直摄影:无人机以垂直角度拍摄地面,确保图像的几何校正更为简单。影像校正:使用摄影测量软件对图像进行几何校正和镶嵌,生成DOM。
(5)数字真正射影像图(TDOM)倾斜摄影:无人机以倾斜角度拍摄地面,确保图像的几何校正更为简单。影像校正:使用摄影测量软件对图像进行几何校正和镶嵌,生成TDOM。
(6)其中DOM(数字正射影像)和TDOM(地形正射影像)在实际应用中的区别主要体现在以下几个方面:
综上所述,DEM、DTM、DSM、DOM和TDOM在地理信息系统和遥感技术中各具特色,各有其广泛的应用领域。它们之间既有区别又有联系,共同构成了地理信息系统的重要组成部分。

### 如何从DEM生成DTMDSM #### 数字地形模型(DTM) 数字地形模型(DTM)表示的是裸露地球表面的高程,即移除了所有植被和其他人为结构后的地形特征。为了从DEM生成DTM,通常需要执行以下操作: - **数据采集**:通过激光雷达(LiDAR)或其他遥感技术收集原始点云数据。 - **分类处理**:利用软件工具对点云中的不同类别进行区分,识别并分离出地面点其他非地面点(如建筑物、树木等)[^1]。 ```python import laspy import numpy as np def classify_ground_points(las_file_path): # 加载LAS/LAZ文件 las = laspy.read(las_file_path) # 获取XYZ坐标数组 points = np.vstack((las.x, las.y, las.z)).transpose() # 使用算法过滤得到地面点索引(此处省略具体实现) ground_indices = filter_algorithm(points) return points[ground_indices] filtered_ground_points = classify_ground_points('path_to_lidar_data.laz') ``` 完成上述过程后,可以将筛选出来的地面点导出为新的栅格格式文件,从而获得DTM。 #### 数字表面模型(DSM) 对于DSM而言,则不需要像创建DTM那样去除地面上的对象。实际上,DSM就是基于完整的LiDAR扫描结果构建而成,保留了所有的自然人工特征的高度信息。如果已经有了包含全部要素的DEM,那么这个DEM本身就相当于一个初步版本的DSM。然而,要使该模型更加精确,可能还需要额外的数据增强工作,比如加入更高分辨率的城市建筑轮廓数据或最新的卫星图像分析成果[^3]。 ```python from osgeo import gdal def create_dsm_from_dem(dem_raster_path, output_path): dem_dataset = gdal.Open(dem_raster_path) band = dem_dataset.GetRasterBand(1) array = band.ReadAsArray() # 对于已经存在的DEM来说,这里可以直接保存作为DSM, # 或者根据实际情况调整数值范围以适应特定应用场景 driver = gdal.GetDriverByName('GTiff') outdata = driver.Create(output_path, dem_dataset.RasterXSize, dem_dataset.RasterYSize, 1, gdal.GDT_Float32) outdata.SetGeoTransform(dem_dataset.GetGeoTransform()) outdata.SetProjection(dem_dataset.GetProjection()) # 同样的地理变换参数 outband = outdata.GetRasterBand(1).WriteArray(array) outdata.FlushCache() # 将缓存写入磁盘 del outdata create_dsm_from_dem('input_dem.tif', 'output_dsm.tif') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

jr428

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值