基于随机森林的多步多维股票预测


前言

本文探讨了使用随机森林对股票进行多维度多时间步的预测的一种方法。

一、普通的随机森林单步预测

此处同时使用多特征来预测多特征,使用目标时间步前N天的平均值作为输入数据。

N = 5  # 例如,使用前5天的数据
#不包括当前行的前N天的平均值,使用dropna()来删除那些因为窗口不足N天而缺少值的行(即DataFrame的前N-1行)
features = data[['Open', 'High', 'Low', 'Close', 'Adj Close','Volume']].rolling(window=N).mean().shift(1).dropna()
target = data[['Open', 'High', 'Low', 'Close', 'Adj Close','Volume']].shift(-N)
target = target.dropna()

# 合并特征和目标变量
X = features.values
y = target.values

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 初始化随机森林回归器
rf = RandomForestRegressor(n_estimators=100
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值