Dp-01背包问题Python版

本文介绍了动态规划的基本概念,以及在01背包问题中的应用,通过实例展示了如何通过状态转移方程求解最大价值。动态规划通过分解问题为子问题来简化复杂度,适用于具有最优子结构和重叠子问题的场景。
摘要由CSDN通过智能技术生成

文章目录

目录

文章目录

前言

一、动态规划是什么?

二、01背包问题

1.分析

三、动态规划在01背包问题中的应用

总结



前言


一、动态规划是什么?

动态规划是一种在数学、计算机科学和经济学中使用的,通过把原问题分解为相对简单的子问题的方式来求解复杂问题的方法。这种方法往往能大大简化问题的求解过程,提高求解效率。本文将结合01背包问题,详细分析动态规划的原理、应用和使用步骤。。

二、01背包问题

1.分析

01背包问题是一个经典的优化问题,它描述的是在给定一组物品,每种物品都有自己的重量和价值,在限定的总重量内,如何选择物品,使得物品的总价值最大。每个物品只能选择一次,要么选择,要么不选择,因此称为01背包问题。

三、动态规划在01背包问题中的应用

动态规划是解决01背包问题的有效方法。我们可以定义一个二维数组dp,其中dp[i][j]表示前i个物品,在总重量不超过j的情况下,能够获得的最大价值。然后,我们可以通过状态转移方程来求解dp数组。

状态转移方程如下:

dp[i][j] = max(dp[i][j], dp[i - 1][j - goods[i - 1][0]] + goods[i - 1])

代码如下(示例):

def dp_01(goods,v):
    # 初始化,先全部赋值为0,这样至少体积为0或者不选任何物品的时候是满足要求
    dp = [[0 for i in range(v + 1)] for j in range(n + 1)]

    process=list()


    for i in range(1, n + 1):
        for j in range(1, v + 1):
            dp[i][j] = dp[i - 1][j]  # 第i个物品不选

            if j >= goods[i - 1][0]:  # 判断背包容量是不是大于第i件物品的体积
                # 在选和不选的情况中选出最大值
                dp[i][j] = max(dp[i][j], dp[i - 1][j - goods[i - 1][0]] + goods[i - 1][1])

    print(f'结果:{dp[-1][-1]}')



if __name__ == '__main__':
    n,v=map(int, input().split() )#输入n个物品,体积不超过v
    goods = []
    for i in range(n):
        goods.append([int(i) for i in input().split()])#嵌套列表(二维列表) 第i件物品 体积  价值
    dp_01(goods,v)

""""
4 5
1 2
2 4
3 4
4 5

8

"""


总结

动态规划:

        通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。动态规划常常适用于有重叠子问题和最优子结构性质的问题。(通俗的来讲就是 大事化小,小事化无)

 分析:
        1.确认状态 2.转移方程 3.初始条件 4.执行顺序

        

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值