Python描述性统计、偏度与峰度、均匀分布、正态分布、二项分布、几何分布、泊松分布、指数分布

本文介绍了Python中进行描述性统计的方法,包括均值、中位数、偏度和峰度。还探讨了各种概率分布,如均匀分布、正态分布、二项分布、几何分布、泊松分布和指数分布,并通过实例展示了如何使用这些分布。此外,文章还讨论了数据的分位数、箱线图、方差和标准差,以及如何利用这些统计概念进行数据探索。
摘要由CSDN通过智能技术生成

关注微信号:小程在线

关注CSDN博客:程志伟的博客

Python描述性统计、偏度与峰度、均匀分布、正态分布、二项分布、几何分布、泊松分布、指数分布
Type "copyright", "credits" or "license" for more information.

IPython 7.6.1 -- An enhanced Interactive Python.

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline

#导入新的数据

mtcars=pd.read_csv('H:/0date/mtcars.csv')
mtcars.head()
Out[2]: 
                name   mpg  cyl   disp   hp  ...   qsec  vs  am  gear  carb
0          Mazda RX4  21.0    6  160.0  110  ...  16.46   0   1     4     4
1      Mazda RX4 Wag  21.0    6  160.0  110  ...  17.02   0   1     4     4
2         Datsun 710  22.8    4  108.0   93  ...  18.61   1   1     4     1
3     Hornet 4 Drive  21.4    6  258.0  110  ...  19.44   1   0     3     1
4  Hornet Sportabout  18.7    8  360.0  175  ...  17.02   0   0     3     2

[5 rows x 12 columns]

#将name列作为索引列

mtcars.set_index(['name'],inplace=True)
mtcars.head()
Out[3]: 
                    mpg  cyl   disp   hp  drat  ...   qsec  vs  am  gear  carb
name                                            ...                           
Mazda RX4          21.0    6  160.0  110  3.90  ...  16.46   0   1     4     4
Mazda RX4 Wag      21.0    6  160.0  110  3.90  ...  17.02   0   1     4     4
Datsun 710         22.8    4  108.0   93  3.85  ...  18.61   1   1     4     1
Hornet 4 Drive     21.4    6  258.0  110  3.08  ...  19.44   1   0     3     1
Hornet Sportabout  18.7    8  360.0  175  3.15  ...  17.02   0   0     3     2

[5 rows x 11 columns]

#查看每列的均值

mtcars.mean()
Out[4]: 
mpg      20.090625
cyl       6.187500
disp    230.721875
hp      146.687500
drat      3.596563
wt        3.217250
qsec     17.848750
vs        0.437500
am        0.406250
gear      3.687500
carb      2.812500
dtype: float64

#每列的中位数

mtcars.median()
Out[5]: 
mpg      19.200
cyl       6.000
disp    196.300
hp      123.000
drat      3.695
wt        3.325
qsec     17.710
vs        0.000
am        0.000
gear      4.000
carb      2.000
dtype: float64

#查看每行的均值

mtcars.mean(axis=1)
Out[6]: 
name
Mazda RX4              29.907273
Mazda RX4 Wag          29.981364
Datsun 710             23.598182
Hornet 4 Drive         38.739545
Hornet Sportabout      53.664545
Valiant                35.049091
Duster 360             59.720000
Merc 240D              24.634545
Merc 230               27.233636
Merc 280               31.860000
Merc 280C              31.787273
Merc 450SE             46.430909
Merc 450SL             46.500000
Merc 450SLC            46.350000
Cadillac Fleetwood     66.232727
Lincoln Continental    66.058545
Chrysler Imperial      65.972273
Fiat 128               19.440909
Honda Civic            17.742273
Toyota Corolla         18.814091
Toyota Corona          24.888636
Dodge Challenger       47.240909
AMC Javelin            46.007727
Camaro Z28             58.752727
Pontiac Firebird       57.379545
Fiat X1-9              18.92

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值