金融分析与风险管理——Python中常用的统计函数

这篇博客探讨了Python在金融分析和风险管理中的应用,重点介绍了Numpy和Scipy库中的统计函数。内容包括Numpy的random模块用于随机抽样的各种分布,如正态分布、对数正态分布和t分布,以及计算统计量的函数。Scipy的stats模块提供了更深入的统计分析,包括各种分布函数和正态性检验,以确保数据符合正态分布假设。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 Numpy 中统计函数的使用

在金融产品定价、风险管理建模领域,带领运用到模拟,而模拟的核心就是生产随机数。通常情况下,计算机产生的随机数并非是真正的随机数,而是按照某设定的分布生成的,Python中的Numpy模块提供了基于各种统计分布函数的随机数,例如:二项分布、几何分布、泊松分布等离散型分布;正态分布、t分布、均匀分布、F分布、贝塔分布、卡方分布、对数分布等连续性分布,可以根据需要比较方便的生产随机数。

1.1 random 模块的随机抽样

Numpy 中的 random 子模块提供了上述常用的分布抽样方法,各分布函数详细的用法可以参照官网介绍,其常用的分布函数用法如下:

简单随机抽样

'''
random.Generator.random(size=None, dtype=np.float64, out=None)
size:抽样的规模
抽样范围[0.0,1.0)
'''
import numpy.random as npr

rand_sample = npr.random(5)
print('size = ',len(rand_sample))
print('抽样结果:',rand_sample )

正态分布随机抽样

'''
random.Generator.normal(loc=0.0, scale=1.0, size=None)
loc:均值
scale:标准方差
size:抽样规模
'''
x_norm = npr.normal(loc=0,scale=1,size=10000)
print('正态分布的均值',round(x_norm.mean(),2))
print('正态分布的标准差',round(x_norm.std(),2))

对数正态分布随机抽样

'''
random.Generator.lognormal(mean=0.0, sigma=1.0, size=None)
mean:均值
sigma:标准方差
size:抽样规模
'''
x_log 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值