将数组保存成图像的多种方法 (包含 scipy.misc.toimage)


本文本打算写toimage这个函数的,发现网上有很多将数组保存为图像的方法,故一起整理在一起。其他方法是参考了:

Numpy数组类型的矩阵,如何将它作为图像写入磁盘?任何格式的图像都行(PNG,JPEG,BMP ...)

最佳的解决方法
可以使用scipy.misc,代码如下:
import scipy.misc
scipy.misc.imsave('outfile.jpg', image_array)
这里顺带说下scipy.misc.toimage函数
函数原来形式如下:
scipy.misc.toimage(*args,**kwds)这个函数将在scipy 1.2.0版本中删除,将会用Pillow的Image.formarray替代
*args:输入的array;
**kwds:输入的关键字;

功能是输入一个numpy数组array,输出一个PIL图像。
这个功能只有在PIL安装后才能使用。输出的PIL图的模式依赖于array的形状和pal, mode这些关键字。

对于2-D arrays, 如果pal 是有效的(N,3) byte类的且其值在(0,255)间的RGB值, 那么mode='P',否则mode='L', 除非mode给出为'F'或‘I’,这种情况下将会创建浮点数 和/或 整数数组。
对于3-D arrays, ‘channel_axis’参数指示数组的哪个维度会保存通道数据。

对于3-D arrays, 如果某个维度是3, 默认mode是RGB或YCbCr。
numpy array 必须是2维或3维的。

函数可写成scipy.misc.toimageARR高=255低= 0的Cmin =无Cmax为无PAL =无模式=无channel_axis =无


上面的scipy版本会标准化所有图像,以便min(数据)变成黑色,max(数据)变成白色。如果数据应该是精确的灰度级或准确的RGB通道,则解决方案为:


  1. import scipy.misc
  2. scipy.misc.toimage(image_array, cmin= 0 . 0, cmax=...).save( 'outfile.jpg')

SciPy 中包含一些用于输入和输出的实用模块。下面介绍其中两个模块:io 和misc。 以图像形式保存数组
因为我们需要对图像进行操作,并且需要使用数组对象来做运算,所以将数组直接保存为图像文件非常有用。
imsave() 函数可以从scipy.misc 模块中载入。要将数组im 保存到文件中,可以使用下面的命 令:
from scipy.misc import imsave  imsave('test.jpg',im)
我在程序中的一个实例是这样的:
for i in range(20):
    image_array=mnist.train.images[i,:]
    image_array=image_array.reshape(28,28)
    filename=save_dir+'mnist_train_%d.jpg' % i
    scipy.misc.toimage(image_array,cmin=0.0,cmax=1.0).save(filename)

第二种解决办法

使用PIL

给定一个numpy数组"A":

  1. from PIL import Image
  2. im = Image.fromarray(A)
  3. im.save( "your_file.jpeg")

你可以用几乎任何你想要的格式来替换"jpeg"。有关格式详见here更多细节

第三种办法

纯Python(2& 3),没有第三方依赖关系的代码片段。

此函数写入压缩的真彩色(每个像素4个字节)RGBA PNG。

  1. def write_png(buf, width, height):
  2. """ buf: must be bytes or a bytearray in Python3.x,
  3. a regular string in Python2.x.
  4. """
  5. import zlib, struct
  6. # reverse the vertical line order and add null bytes at the start
  7. width_byte_4 = width * 4
  8. raw_data = b''.join( b'\x00' + buf[span:span + width_byte_4]
  9. for span in range((height - 1) * width_byte_4, -1, - width_byte_4))
  10. def png_pack(png_tag, data):
  11. chunk_head = png_tag + data
  12. return (struct.pack( "!I", len(data)) +
  13. chunk_head +
  14. struct.pack( "!I", 0xFFFFFFFF & zlib.crc32(chunk_head)))
  15. return b''.join([
  16. b'\x89PNG\r\n\x1a\n',
  17. png_pack( b'IHDR', struct.pack( "!2I5B", width, height, 8, 6, 0, 0, 0)),
  18. png_pack( b'IDAT', zlib.compress(raw_data, 9)),
  19. png_pack( b'IEND', b'')])

...数据应直接写入以二进制打开的文件,如下所示:

  1. data = write_png(buf, 64, 64)
  2. with open( "my_image.png", 'wb') as fd:
  3. fd.write(data)

第四种办法

matplotlib

  1. import matplotlib
  2. matplotlib.image.imsave( 'name.png', array)

适用于matplotlib 1.3.1,不确定更低的版本是否有效。文档:

  1. Arguments:
  2. *fname*:
  3. A string containing a path to a filename, or a Python file-like object.
  4. If *format* is * None* and *fname* is a string, the output
  5. format is deduced from the extension of the filename.
  6. *arr*:
  7. An MxN (luminance), MxNx3 (RGB) or MxNx4 (RGBA) array.

python,image,numpy

第五种办法

如果使用matplotlib,也可以这样做:

  1. import matplotlib .pyplot as plt
  2. plt .imshow( matrix) #Needs to be in row, col order
  3. plt .savefig( filename)

这将保存plot(而不是图像本身)。

python,image,numpy

第6种办法

python的opencv(http://docs.opencv.org/trunk/doc/py_tutorials/py_tutorials.html)。

  1. import cv2
  2. import numpy as np
  3. cv2.imwrite( "filename.png", np.zeros(( 10, 10)))

如果你需要做更多的处理,而不是保存,这个库比较有用。

参考文献

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值