本文本打算写toimage这个函数的,发现网上有很多将数组保存为图像的方法,故一起整理在一起。其他方法是参考了:
Numpy数组类型的矩阵,如何将它作为图像写入磁盘?任何格式的图像都行(PNG,JPEG,BMP ...)
最佳的解决方法
可以使用scipy.misc,代码如下:
import scipy.misc
scipy.misc.imsave('outfile.jpg', image_array)
这里顺带说下scipy.misc.toimage函数
函数原来形式如下:
scipy.misc.toimage(*args,**kwds)这个函数将在scipy 1.2.0版本中删除,将会用Pillow的Image.formarray替代
。
*args:输入的array;
**kwds:输入的关键字;
功能是输入一个numpy数组array,输出一个PIL图像。
这个功能只有在PIL安装后才能使用。输出的PIL图的模式依赖于array的形状和pal, mode这些关键字。
对于2-D arrays, 如果pal 是有效的(N,3) byte类的且其值在(0,255)间的RGB值, 那么mode='P',否则mode='L', 除非mode给出为'F'或‘I’,这种情况下将会创建浮点数 和/或 整数数组。
对于3-D arrays, ‘channel_axis’参数指示数组的哪个维度会保存通道数据。
对于3-D arrays, 如果某个维度是3, 默认mode是RGB或YCbCr。
numpy array 必须是2维或3维的。
上面的scipy
版本会标准化所有图像,以便min(数据)变成黑色,max(数据)变成白色。如果数据应该是精确的灰度级或准确的RGB通道,则解决方案为:
-
import scipy.misc
-
scipy.misc.toimage(image_array, cmin= 0 . 0, cmax=...).save( 'outfile.jpg')
-
(
SciPy 中包含一些用于输入和输出的实用模块。下面介绍其中两个模块:io 和misc。
以图像形式保存数组
因为我们需要对图像进行操作,并且需要使用数组对象来做运算,所以将数组直接保存为图像文件非常有用。
imsave() 函数可以从scipy.misc 模块中载入。要将数组im 保存到文件中,可以使用下面的命 令:
from scipy.misc import imsave imsave('test.jpg',im) )
因为我们需要对图像进行操作,并且需要使用数组对象来做运算,所以将数组直接保存为图像文件非常有用。
imsave() 函数可以从scipy.misc 模块中载入。要将数组im 保存到文件中,可以使用下面的命 令:
from scipy.misc import imsave imsave('test.jpg',im) )
我在程序中的一个实例是这样的:
for i in range(20):
image_array=mnist.train.images[i,:]
image_array=image_array.reshape(28,28)
filename=save_dir+'mnist_train_%d.jpg' % i
scipy.misc.toimage(image_array,cmin=0.0,cmax=1.0).save(filename)
第二种解决办法
使用PIL。
给定一个numpy数组"A":
-
from PIL import Image
-
im = Image.fromarray(A)
-
im.save( "your_file.jpeg")
你可以用几乎任何你想要的格式来替换"jpeg"。有关格式详见here更多细节
第三种办法
纯Python(2& 3),没有第三方依赖关系的代码片段。
此函数写入压缩的真彩色(每个像素4个字节)RGBA
PNG。
-
def write_png(buf, width, height):
-
""" buf: must be bytes or a bytearray in Python3.x,
-
a regular string in Python2.x.
-
"""
-
import zlib, struct
-
-
# reverse the vertical line order and add null bytes at the start
-
width_byte_4 = width * 4
-
raw_data = b''.join( b'\x00' + buf[span:span + width_byte_4]
-
for span in range((height - 1) * width_byte_4, -1, - width_byte_4))
-
-
def png_pack(png_tag, data):
-
chunk_head = png_tag + data
-
return (struct.pack( "!I", len(data)) +
-
chunk_head +
-
struct.pack( "!I", 0xFFFFFFFF & zlib.crc32(chunk_head)))
-
-
return b''.join([
-
b'\x89PNG\r\n\x1a\n',
-
png_pack( b'IHDR', struct.pack( "!2I5B", width, height, 8, 6, 0, 0, 0)),
-
png_pack( b'IDAT', zlib.compress(raw_data, 9)),
-
png_pack( b'IEND', b'')])
...数据应直接写入以二进制打开的文件,如下所示:
-
data = write_png(buf, 64, 64)
-
with open( "my_image.png", 'wb') as fd:
-
fd.write(data)
使用示例感谢@Evgeni Sergeev:https://stackoverflow.com/a/21034111/432509
第四种办法
用matplotlib
:
-
import matplotlib
-
-
matplotlib.image.imsave( 'name.png', array)
适用于matplotlib 1.3.1,不确定更低的版本是否有效。文档:
-
Arguments:
-
*fname*:
-
A string containing a path to a filename, or a Python file-like object.
-
If *format* is * None* and *fname* is a string, the output
-
format is deduced from the extension of the filename.
-
*arr*:
-
An MxN (luminance), MxNx3 (RGB) or MxNx4 (RGBA) array.
第五种办法
如果使用matplotlib,也可以这样做:
-
import matplotlib .pyplot as plt
-
plt .imshow( matrix) #Needs to be in row, col order
-
plt .savefig( filename)
这将保存plot(而不是图像本身)。
第6种办法
python的opencv
(http://docs.opencv.org/trunk/doc/py_tutorials/py_tutorials.html)。
-
import cv2
-
import numpy as np
-
-
cv2.imwrite( "filename.png", np.zeros(( 10, 10)))
如果你需要做更多的处理,而不是保存,这个库比较有用。