栈的概念和实现

1.栈的概念及结构

栈:一种特殊的线性表,其只允许在固定的一端进行插入和删除元素操作。进行数据插入和删除操作的一端称为栈顶,另一端称为栈底。栈中的数据元素遵守后进先出LIFO(Last In First Out)的原则。
压栈:栈的插入操作叫做进栈/压栈/入栈,入数据在栈顶。
出栈:栈的删除操作叫做出栈。出数据也在栈顶

满足限定:先进后出(相对的)

栈的实现一般可以使用数组或者链表实现,相对而言数组的结构实现更优一些。因为数组在尾上插入数据的代价比较小。

用数组实现还有个优点:cpu高速缓存命中率高。

2.栈的实现

.h文件

#include<stdio.h>
#include<assert.h>
#include<stdlib.h>
#include<stdbool.h>
//使用数组结构更好,cpu高速缓存命中效率更高,出数据方便(链表也可以,只不过出数据不太好)

//将数组的尾作为栈顶。
typedef int STDataType;
typedef struct stack {
	STDataType* a;
	int top;
	int capacity;
}ST;
 //初始化
void STInit(ST* ps);
//销毁
void STDestory(ST* ps);
//插入数据
void STpush(ST* ps, STDataType x);
//删除数据
void STpop(ST* ps);
//拿到栈顶数据
STDataType STTop(ST* ps);
//数据个数
int STSize(ST* ps);
//判断是否为空
bool STEmpty(ST* ps);

.c文件

#include"stack.h"
//初始化
void STInit(ST*ps) {
	assert(ps);
	ps->a = NULL;
	ps->capacity = 0;
	ps->top = -1;
}
//销毁
void STDestory(ST* ps) {
	free(ps->a);
	ps->a = NULL;
	ps->capacity = 0;
	ps->top = -1;
}
//栈顶
//这里需要注意top是下标,当我们一开始将top赋值为0时,那么我们插入一个数据时和没有数据时
//将没有区别,所以我们可以先将top赋值为-1.
void STpush(ST* ps, STDataType x) {
	assert(ps);
	int tmp1 = ps->top + 1;
	//满了,扩容
	if (tmp1 == ps->capacity)
	{
		int newcapacity = ps->capacity == 0 ? 4 : ps->capacity * 2;
		STDataType* tmp = (STDataType*)realloc(ps->a ,newcapacity * sizeof(STDataType));
		if (tmp == NULL) {
			perror("relloc fail !");
			return;
		}
		ps->a = tmp;
		ps->capacity = newcapacity;
	}
	ps->top++;
	ps->a[ps->top] = x;
}
void STpop(ST* ps) {
	assert(ps);
	assert(!STEmpty(ps));
	ps->top--;
}

STDataType STTop(ST* ps) {
	assert(ps);
	assert(!STEmpty(ps));
	return ps->a[ps->top];
}

int STSize(ST* ps) {
	assert(ps);
	return ps->top += 1;
}
bool STEmpty(ST* ps) {
	assert(ps);
	return ps->top == -1;
}

当然大家也可以对其中的代码进行改进。

谢谢
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

c23856

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值