GAN|生成对抗网络的前沿进展(论文、框架&资源)全面总结

成模型(GenerativeModel)是一种可以通过学习训练样本来产生更多类似样本的模型。在所有生成模型当中,最具潜力的是生成对抗网络(Generative Adversarial Networks, GANs)。GANs 是非监督机器学习的一种,它的运作方式可被看做是两个神经网络相互竞争的零和游戏(zero-sum game)。


2014年,Ian Goodfellow等人在《GenerativeAdversarial Nets》一文中首次提出了GANs,标志着GANs的诞生。


原文链接:https://arxiv.org/pdf/1406.2661v1.pdf

PPT链接:http://www.iangoodfellow.com/slides/2016-12-04-NIPS.pdf

源码链接:https://github.com/goodfeli/adversarial

视频链接:https://www.youtube.com/watch?v=HN9NRhm9waY


本文总结了一系列关于GANs的前沿工作进展

 

一、最新研究论文(根据Google Scholar的引用数进行降序排列)

 

  1. 基于深度卷生成抗网络的无监督学习(Unsupervised Representation Learning with Deep     Convolutional Generative Adversarial Networks (DCGANs))2015

    原文接:https://arxiv.org/pdf/1511.06434v2.pdf

  2. 例的解和利用(Explaining and Harnessing     Adversarial Examples)2014

    原文链接:https://arxiv.org/pdf/1412.6572.pdf

  3. 基于深度生成模型的半督学( Semi-Supervised Learning with Deep     Generative Models )2014

    原文接:https://arxiv.org/pdf/1406.5298v2.pdf

  4. 基于拉普拉斯金字塔生成式对抗网络的深度图像生成模型(Deep Generative Image Models using a Laplacian Pyramid     of Adversarial Networks)2015

    原文接:http://papers.nips.cc/paper/5773-deep-generative-image-models-using-a-laplacian-pyramid-of-adversarial-networks.pdf

  5. 训练GANs的一些技巧(Improved Techniques for  Training GANs)2016

    原文链接:https://arxiv.org/pdf/1606.03498v1.pdf

  6. 条件生成抗网(Conditional Generative     Adversarial Nets)2014

    原文链接:https://arxiv.org/pdf/1411.1784v1.pdf

  7. 生成式矩匹配网络(Generative Moment Matching Networks)2015

    原文链接:http://proceedings.mlr.press/v37/li15.pdf

  8. 超越均方差的深度多尺度视频预测(Deep multi-scale video     prediction beyond mean square error)2015

    原文链接:https://arxiv.org/pdf/1511.05440.pdf

  9. 相似性度量的超像素自编码(Autoencoding beyond pixels using a learned similarity  metric)2015

    原文链接:https://arxiv.org/pdf/1512.09300.pdf

  10. 抗自编码(Adversarial     Autoencoders)2015

    原文链接:https://arxiv.org/pdf/1511.05644.pdf

  11. InfoGAN:基于信息最大化GANs的可解表达学习(InfoGAN:Interpretable Representation Learning by Information Maximizing Generative     Adversarial Nets)2016

    原文链接:https://arxiv.org/pdf/1606.03657v1.pdf

  12. 上下文像素编码:通修复行特征学(Context     Encoders: Feature Learning by Inpainting)2016

    原文链接:http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Pathak_Context_Encoders_Feature_CVPR_2016_paper.pdf

  13. 生成抗网络实现文本合成像(Generative     Adversarial Text to Image Synthesis)2016

    原文链接:http://proceedings.mlr.press/v48/reed16.pdf

  14. 基于像素卷的条件生成片(Conditional   Image Generation with PixelCNN Decoders)2015

    原文链接:https://arxiv.org/pdf/1606.05328.pdf

  15. 抗特征学(Adversarial Feature     Learning)2016

    原文链接:https://arxiv.org/pdf/1605.09782.pdf

  16. 合逆自回流的分推理(Improving Variational     Inference with Inverse Autoregressive Flow )2016

    原文链接:https://papers.nips.cc/paper/6581-improving-variational-autoencoders-with-inverse-autoregressive-flow.pdf

  17. 深度学统对本黑盒攻(Practical     Black-Box Attacks against Deep Learning Systems using Adversarial Examples)2016

    原文链接:https://arxiv.org/pdf/1602.02697.pdf

  18. 参加,推断,重复:基于生成模型的快速景理解(Attend,     infer, repeat: Fast scene understanding with generative models)2016

    原文链接:https://arxiv.org/pdf/1603.08575.pdf

  19. f-GAN: 使用分散度最小化训练生成神器(f-GAN:  Training Generative Neural Samplers using Variational Divergence     Minimization )2016

    原文链接:http://papers.nips.cc/paper/6066-tagger-deep-unsupervised-perceptual-grouping.pdf

  20. 在自然像流形上的生成视觉操作(Generative     Visual Manipulation on the Natural Image Manifold)2016

    原文链接:https://arxiv.org/pdf/1609.03552.pdf

  21. 平均差异最大训练生成神(Training generative neural networks via Maximum Mean Discrepancy optimization)2015

    原文链接:https://arxiv.org/pdf/1505.03906.pdf

  22. 对抗性推断学(Adversarially     Learned Inference)2016

    原文链接:https://arxiv.org/pdf/1606.00704.pdf

  23. 基于循环对抗网图像生成(Generating images with recurrent adversarial networks)2016

    原文链接:https://arxiv.org/pdf/1602.05110.pdf

  24. 生成抗模仿学(Generative Adversarial Imitation Learning)2016

    原文链接:http://papers.nips.cc/paper/6391-generative-adversarial-imitation-learning.pdf

  25. 基于3D生成抗模型学习物体形状的概率间(Learning a Probabilistic Latent Space of Object Shapes     via 3D Generative-Adversarial Modeling)2016

    原文链接:https://arxiv.org/pdf/1610.07584.pdf

  26. 画画(Learning What     and Where to Draw)2016

    原文链接:https://arxiv.org/pdf/1610.02454v1.pdf

  27. 基于助分器GANs的条件像合成(Conditional Image     Synthesis with Auxiliary Classifier GANs)2016

    原文链接:https://arxiv.org/pdf/1610.09585.pdf

  28. 生成模型的学(Learning in Implicit     Generative Models)2016

    原文:https://arxiv.org/pdf/1610.03483.pdf

  29. VIME: 分信息最大化探索(VIME: Variational     Information Maximizing Exploration)2016

    原文链接:http://papers.nips.cc/paper/6591-vime-variational-information-maximizing-exploration.pdf

  30. 生成抗网的展开(Unrolled     Generative Adversarial Networks)2016

    原文链接:https://arxiv.org/pdf/1611.02163.pdf

  31. 训练生成抗网的基本方法(Towards  Principled Methods for Training Generative Adversarial Networks)2017

    原文链接:https://arxiv.org/pdf/1701.04862.pdf

  32. 基于内省对抗网络的神经图像编辑(Neural Photo Editing with Introspective Adversarial   Networks)2016

    原文链接:https://arxiv.org/pdf/1609.07093.pdf

  33. 基于解器的生成模型的定量分析(On the   Quantitative Analysis of Decoder-Based Generative Models )2016

    原文链接:https://arxiv.org/pdf/1611.04273.pdf

  34. 合生成抗网和Actor-Critic 方法(Connecting Generative     Adversarial Networks and Actor-Critic Methods)2016

    原文链接:https://arxiv.org/pdf/1610.01945.pdf

  35.  通过对抗网使用模和非训练( Learning     from Simulated and Unsupervised Images through Adversarial Training)2016

    原文链接:https://arxiv.org/pdf/1612.07828.pdf

  36. 基于上下文RNN-GANs的抽象推理的生成(Contextual     RNN-GANs for Abstract Reasoning Diagram Generation)2016

    原文链接:https://arxiv.org/pdf/1609.09444.pdf

  37. 生成多抗网(Generative     Multi-Adversarial Networks)2016

    原文链接:https://arxiv.org/pdf/1611.01673.pdf

  38. 生成抗网络组合(Ensembles of   Generative Adversarial Network)2016

    原文链接:https://arxiv.org/pdf/1612.00991.pdf

  39. 生成器目标的GANs(Improved  generator objectives for GANs) 2016

    原文链接:https://arxiv.org/pdf/1612.02780.pdf

  40. 生成抗模型的向量精准修复(Precise     Recovery of Latent Vectors from Generative Adversarial Networks)2017

    原文链接:https://openreview.net/pdf?id=HJC88BzFl

  41. 生成混合模型(Generative     Mixture of Networks)2017

    原文链接:https://arxiv.org/pdf/1702.03307.pdf

  42. 记忆生成空模型(Generative Temporal     Models with Memory)2017

    原文链接:https://arxiv.org/pdf/1702.04649.pdf

  43. 停止GAN暴力:生成性非对抗模型(Stopping GAN Violence: Generative Unadversarial     Networks)2017

    原文链接:https://arxiv.org/pdf/1703.02528.pdf

 

二、理论学习

1.     训练GANs的技巧,

参见链接:http://papers.nips.cc/paper/6124-improved-techniques-for-training-gans.pdf

2.     Energy-Based GANs 以及Yann Le Cun 的相关研究

参见链接:http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

3.     模式正则化GAN

参见链接:https://arxiv.org/pdf/1612.02136.pdf

 

三、报告

1.     Ian GoodfellowGANs报告

参见链接:http://www.iangoodfellow.com/slides/2016-12-04-NIPS.pdf    

2.     Russ Salakhutdinov的深度生成模型

参见链接:http://www.cs.toronto.edu/~rsalakhu/talk_Montreal_2016_Salakhutdinov.pdf

 

 

四、课程/教程

1.     NIPS 2016教程:生成对抗网络

参见链接:https://arxiv.org/pdf/1701.00160.pdf

2.     训练GANs的技巧和窍门

参见链接:https://github.com/soumith/ganhacks

3.     OpenAI生成模型

参见链接:https://blog.openai.com/generative-models/

4.     Keras实现MNIST生成对抗模型

参见链接:https://oshearesearch.com/index.php/2016/07/01/mnist-generative-adversarial-model-in-keras/

5.     用深度学习TensorFlow实现图像修复

参见链接:http://bamos.github.io/2016/08/09/deep-completion/

 

四、Github资源以及模型

1.     深度卷积生成对抗模型(DCGAN

参见链接:https://github.com/Newmu/dcgan_code

2.     TensorFlow实现深度卷积生成对抗模型(DCGAN

参见链接:https://github.com/carpedm20/DCGAN-tensorflow

3.     Torch实现深度卷积生成对抗模型(DCGAN

参见链接:https://github.com/soumith/dcgan.torch

4.     Keras实现深度卷积生成对抗模型(DCGAN

参见链接:https://github.com/jacobgil/keras-dcgan

5.     使用神经网络生成自然图像(FacebookEyescream项目)

参见链接:https://github.com/facebook/eyescream

6.     对抗自编码(AdversarialAutoEncoder

参见链接:https://github.com/musyoku/adversarial-autoencoder

7.     利用ThoughtVectors 实现文本到像的合成

参见链接:https://github.com/paarthneekhara/text-to-image

8.     对抗样本生成器(Adversarialexample generator

参见链接:https://github.com/e-lab/torch-toolbox/tree/master/Adversarial

9.     深度生成模型的半监督学习

参见链接:https://github.com/dpkingma/nips14-ssl

10.  GANs的训练方法

参见链接:https://github.com/openai/improved-gan

11.  生成式矩匹配网络(Generative Moment Matching Networks, GMMNs)

参见链接:https://github.com/yujiali/gmmn

12.  对抗视频生成

参见链接:https://github.com/dyelax/Adversarial_Video_Generation

13.  基于条件对抗网络的图像到图像翻译(pix2pix)

参见链接:https://github.com/phillipi/pix2pix

14.  对抗机器学习库Cleverhans,

参见链接:https://github.com/openai/cleverhans


五、框架以及学习库(根据GitHub的星级排序)

1.     谷歌的TensorFlow [C++ and CUDA]

主页链接:https://www.tensorflow.org/

Github链接:https://github.com/tensorflow/tensorflow

2.     Berkeley Vision and LearningCenter (BVLC) 的Caffe [C++]

主页链接:http://caffe.berkeleyvision.org/

Github链接:https://github.com/BVLC/caffe

安装指南:http://gkalliatakis.com/blog/Caffe_Installation/README.md

3.     François Chollet的Keras [Python]

主页链接:https://keras.io/

Github链接:https://github.com/fchollet/keras

4.     Microsoft Cognitive Toolkit -CNTK [C++]

主页链接:https://www.microsoft.com/en-us/research/product/cognitive-toolkit/

Github链接:https://github.com/Microsoft/CNTK

5.     Amazon 的MXNet [C++]

主页链接:http://mxnet.io/

Github链接:https://github.com/dmlc/mxnet

6.     Collobert, Kavukcuoglu &Clement Farabet的Torch,被Facebook广泛采用[Lua]

主页链接:http://torch.ch/

Github链接:https://github.com/torch

  1. Andrej Karpathy 的Convnetjs [JavaScript]

    主页链接:http://cs.stanford.edu/people/karpathy/convnetjs/

    Github链接:https://github.com/karpathy/convnetjs

  2. Université de Montréal的 Theano [Python]

    主页链接:http://deeplearning.net/software/theano/

    Github链接:https://github.com/Theano/Theano

  3. startup Skymind 的Deeplearning4j [Java]

    主页链接:https://deeplearning4j.org/

    Github链接:https://github.com/deeplearning4j/deeplearning4j

  4. Baidu 的Paddle[C++]

    主页链接:http://www.paddlepaddle.org/

    Github链接:https://github.com/PaddlePaddle/Paddle

  5. Amazon 的Deep Scalable Sparse  Tensor Network Engine (DSSTNE) [C++]

    Github链接:https://github.com/amzn/amazon-dsstne    

  6. Nervana Systems 的Neon [Python & Sass]

    主页链接:http://neon.nervanasys.com/docs/latest/

    Github链接:https://github.com/NervanaSystems/neon

  7. Chainer [Python]

    主页链接:http://chainer.org/

    Github链接:https://github.com/pfnet/chainer

  8. h2o [Java]

    主页链接:https://www.h2o.ai/

    Github链接:https://github.com/h2oai/h2o-3

  9. Istituto Dalle Molle di     Studi sull’Intelligenza Artificiale (IDSIA) 的Brainstorm [Python]

    Github链接:https://github.com/IDSIA/brainstorm

  10. Andrea Vedaldi 的Matconvnet by [Matlab]

    主页链接:http://www.vlfeat.org/matconvnet/

    Github链接:https://github.com/vlfeat/matconvnet

更多细节请参考原文链接:http://gkalliatakis.com/blog/delving-deep-into-gans

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值