向量点积与叉积的定义及应用

向量的点积:

假设向量u (u x , u y )和v (v x , v y ),uv 之间的夹角为α,从三角形的边角关系等式出发,可作出如下简单推导:

  |u - v ||u - v | = |u ||u | + |v ||v | - 2|u ||v |cosα  

===>
 
  (u x - v x2 + (u y - v y ) = u x 2 + u y 2 +v x 2 +v y 2 - 2|u ||v |cosα

===>
  
   -2u x v x - 2u y v y = -2|u ||v |cosα

===>

   cosα = (u x v x + u y v y ) / (|u ||v |)

这样,就可以根据向量uv 的坐标值计算出它们之间的夹角。

定义uv 的点积运算: u . v = (u x v x + u y v y ),

上面的cosα可简写成: cosα = u . v / (|u ||v |)

u . v = 0时(即u x v x + u y v y = 0),向量uv 垂直;当u . v > 0时,uv 之间的夹角为锐角;当u . v < 0时,uv 之间的夹角为钝角。

可以将运算从2维推广到3维。



向量的叉积:

假设存在向量u(u x , u y , u z ), v(v x , v y , v z ), 求同时垂直于向量u , v 的向量w (w x , w y , w z ).

因为wu 垂直,同时wv 垂直,所以w . u = 0, w . v = 0; 即

u x w x + u y w y + u z w z = 0;
v x w x + v y w y + v z w z = 0;

分别削去方程组的w yw x 变量的系数,得到如下两个等价方程式:

(u x v y - u y v x )w x = (u y v z - u z v y )w z
(u x v y - u y v x )w y = (u z v x - u x v z )w z

于是向量w的一般解形式为:

w = (w x , w y , w z ) = ((u y v z - u z v y )w z / (u x v y - u y v x ), (u z v x - u x v z )w z / (u x v y - u y v x ), w z )
  = (w z / (u x v y - u y v x ) * (u y v z - u z v y , u z v x - u x v z , u x v y - u y v x ))

因为:

   u x (u y v z - u z v y ) + u y (u z v x - u x v z ) + u z (u x v y - u y v x )
 = u x u y v z - u x u z v y + u y u z v x - u y u x v z + u z u x v y - u z u y v x
 = (u x u y v z - u y u x v z ) + (u y u z v x - u z u y v x ) + (u z u x v y - u x u z v y )  
 = 0 + 0 + 0 = 0

   v x (u y v z - u z v y ) + v y (u z v x - u x v z ) + v z (u x v y - u y v x )  
 = v x u y v z - v x u z v y + v y u z v x - v y u x v z + v z u x v y - v z u y v x
 = (v x u y v z - v z u y v x ) + (v y u z v x - v x u z v y ) + (v z u x v y - v y u x v z )
 = 0 + 0 + 0 = 0

由此可知,向量(u y v z - u z v y , u z v x - u x v z , u x v y - u y v x )是同时垂直于向量uv 的。

为此,定义向量u = (u x , u y , u z )和向量 v = (v x , v y , v z )的叉积运算为:u x v = (u y v z - u z v y , u z v x - u x v z , u x v y - u y v x )

上面计算的结果可简单概括为:向量u x v 垂直于向量uv


根据叉积的定义,沿x坐标轴的向量i = (1, 0, 0)和沿y坐标轴的向量j = (0, 1, 0)的叉积为:

 i x j = (1, 0, 0) x (0, 1, 0) = (0 * 0 - 0 * 1, 0 * 0 - 1 * 0, 1 * 1 - 0 * 0) = (0, 0, 1) = k

同理可计算j x k :
 
 j x k = (0, 1, 0) x (0, 0, 1) = (1 * 1 - 0 * 0, 0 * 0 - 0 * 1, 0 * 0 - 0 * 0) = (1, 0, 0) = i

以及k x i :

 k x i = (0, 0, 1) x (1, 0, 0) = (0 * 0 - 1 * 0, 1 * 1 - 0 * 0, 0 * 0 - 0 * 0) = (0, 1, 0) = j

由叉积的定义,可知:

 v x u = (v y u z - v z u y , v z u x - v x u z , v x u y - v y u x ) = - (u x v )

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值