向量的叉积、点积和外积是向量代数中非常重要的操作,用于描述向量间的关系。它们广泛应用于物理、计算机图形学、几何以及蛋白质结构分析等领域。下面对每个运算进行详细介绍,并通过 PyTorch 示例代码展示其实现。
1. 点积 (Dot Product)
点积是两个向量之间的数量积,结果是一个标量。点积用于测量两个向量的平行性或相对角度。如果两个向量的点积为零,则它们互相垂直。
其中,θ 是两个向量之间的夹角。
PyTorch 实现点积:
import torch
# 定义两个向量 a 和 b
a = torch.tensor([1.0, 2.0, 3.0])
b = torch.tensor([4.0, 5.0, 6.0])
# 计算点积
dot_product = torch.dot(a, b)
print(f"点积: {dot_product.item()}")
2. 叉积 (Cross Product)
叉积是两个向量之间的向量积,结果是一个新的向量。叉积用于计算两个向量形成的平面的法向量,并且可以用来确定两个向量之间的垂直关系。