530. Minimum Absolute Difference in BST

530. Minimum Absolute Difference in BST

题目描述

Given a binary search tree with non-negative values, find the minimum absolute difference between values of any two nodes.

Example:

Input:

   1
    \
     3
    /
   2

Output:
1

Explanation:
The minimum absolute difference is 1, which is the difference between 2 and 1 (or between 2 and 3).

Note: There are at least two nodes in this BST.

这道题目就是计算任意两个节点的值,计算最小的差。

这里我是使用了中序遍历存储,然后计算最小的值。

代码实现

一开始以为是计算连续两个节点之间的最小值,所以计算错误:

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    int res = INT_MAX, max = INT_MIN, min = INT_MAX;
    int getMinimumDifference(TreeNode* root) {
        if(!root) return res;
        else {
            if(root->left)  { 
                if(abs(root->val - root->left->val) < res) res = abs(root->val - root->left->val); 
                    res = getMinimumDifference(root->left); 
            }
            if(root->right) {
                if(abs(root->val - root->right->val) < res) res = abs(root->val - root->right->val); 
                    res = getMinimumDifference(root->right); 
            }
        }
        return res;
    }
};

然后我使用了中序遍历,就找到了最小的absolute diff。

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    void getInorder(vector<int>&inque, TreeNode* root) {
        if(!root)  return;
        getInorder(inque, root->left);
        inque.push_back(root->val);
        getInorder(inque, root->right);
    }

    int getMinimumDifference(TreeNode* root) {
        if(!root) return 0;
        vector<int> inOrder;
        getInorder(inOrder, root);
        int res = INT_MAX;
        for(int i = 1, n = inOrder.size(); i < n; i++) 
            if((inOrder[i] - inOrder[i-1]) < res)
                res = inOrder[i] - inOrder[i-1];
        return res;
    }
};

刚才的方法是递归实现的,需要额外的O(n)的存储。所以这里改成使用非递归的方式,就可以节约不少空间。当然非递归的方式也需要一个栈,但是这个栈相比之前的vector更加节约内存。

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    int getMinimumDifference(TreeNode* root) {
        int res = INT_MAX;
        if(root == NULL)  return res;
        stack<TreeNode*> sk;
        TreeNode* pre = nullptr;
        TreeNode* suc = nullptr;
        while(true){
            // 把左边的节点push进入到栈中
            while(root){
                sk.push(root);
                root = root->left;
            }
            // 若为空则退出
            if(sk.empty()) break;
            // 从最左边的子节点开始计算起
            root = sk.top();
            sk.pop();
            suc = (!sk.empty()) ? sk.top() : nullptr;
            // 把左边节点与中间节点计算差值
            if(pre) res = min(res, abs(root->val - pre->val));
            // 计算右边节点与父节点的差值
            if(suc) res = min(res, abs(root->val - suc->val));
            pre = root;
            root = root->right;
        }
        return res;
    }    
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值