炼丹感悟:On the Generalization of RL

©作者|YukiRain

研究方向|强化学习泛化和鲁棒性

当今RL的问题很多,诸如收敛看运气效果看天命之类的,之前有很多大佬也有吐槽过,本渣也在某个回答 [1] 里吐槽过。

根据个人经验来讲,目前大部分 RL paper 使用的主要 benchmark,比如 MuJoCo 或者 Atari,实际上都是偏弱的(更不用说前两年 MARL 用的 multiagent-particle-envs [2]),在偏弱的实验环境里,模型训练出来在那边跑一跑,看起来结果尚可,实际很多模型的本质问题暴露的不明显,暴露得不明显就不会引起 community 的广泛关注,相关的研究也就会比较少,难成体系。 

很不幸,本文要讨论的 RL 泛化能力问题,就是这样的一个问题。

注:本文讨论的 generalization,有些文章里叫做 robustness,有些文章里叫 generalization,一般来说 robustness 设定中环境的 transition 还是固定的,只不过测试时模型会遇到训练时没见过的场景;而 generalization 一般是指训练环境与测试环境的 transition 有微小差异的时候,希望模型仍可以 cover 测试场景,以下统一使用 generalization 来讨论这两个概念,可能有点混淆。

为啥RL需要泛化?

绝大多数 RL 的基础都是 MDP,MDP 和 supervised learning 最本质的区别,就是前者解决的是一个满足 Markov 性质的环境上的 reward 最大化问题,所以一开始问题的前提假设中就只有一个固定的环境,听起来,泛化能力问题似乎应该是一个独属于 supervised learning 的问题,至少在 RL 的理论层面,是不存在测试环境与训练环境不同的问题的。

但实际上,只要你尝试在真正的应用场景中尝试过 RL,就会发现这是一个无法回避的问题,我去年在公司实习期间,很多实际做过 RL 应用的同事都会讲到的一个重要经验就是:RL 真的很容易过拟合。由于学术界相对研究比较少,应用中就会出现五花八门的问题,随之而来五花八门的解决方案:

案例一,众所周知 DeepMind 和 OpenAI 都做游戏 AI,一个做星际一个做 Dota,为了训练出一个超过人类水平的 AI,两家共同的思路就是 self-play,但是实际上 self-play 会遇到训练时过拟合于对手策略的问题,因为实际部署时会遇到各种各样奇葩的对手策略,训练时从来没有见过奇葩对手的模型会严重翻车。

DeepMind 早早地就预见到了这个问题,在 17 年 A Unified Game-Theoretic Approach to Multiagent Reinforcement Learning [3] 这篇文章里面就指出,即使是在非常简单的环境,self-play 训练出的模型也会严重过拟合于对手策略。

所以做星际的时候他们压根就没想过要用一个模型解决所有问题,而是要引入 game theory 去做一个 zero-sum Markov game 中找 Nash equilibrium 的优化,后续这个思路在另一篇 ICML 的文章 Open-ended Learning in Symmetric Zero-sum Games [4] 又进一步得到了补全。

所以后来 AlphaStar 的训练中,他们用了数量惊人的算力资源,搞了一个 AlphaLeague,用类似 population-based training [5] 的方式分阶段训练——考虑目前绝大多数公司的算力情况,暂时,这套方法对其他公司的实践不具有太大的指导意义。

在这篇 OpenAI Five 的博客 [6] 中,OpenAI 表示 2017 年,他们在模型训练的过程中加入了环境参数的随机化后,模型开始在 1v1 场景下超越人类水平,后续这种随机化技巧广泛使用在他们的 5v5 模型,甚至是机器人模型的训练中。

案例二,robotics 训练,因为机器人机械臂有使用寿命的限制,目前常用的一种方式是在物理仿真模拟环境中训练,模型收敛后部署到现实世界中,然而模拟器不大可能建模出现实世界中所有的变量,实际上模拟器中表现良好的模型,在现实世界的表现会有所下降。

目前主要考虑两种解决方案:一是在训练期在模拟器中加入随机化,二是认为从模拟器到现实是一个迁移学习的问题,以 sim2real 为关键词搜索,这方面的研究非常多,这里简单列举两篇:

Tzeng E, Devin C, Hoffman J, et al. Towards adapting deep visuomotor representations from simulated to real environments[DB/OL]. arXiv:1511.07111. 

Peng X B, Andrychowicz M, Zaremba W, et al. Sim-to-real transfer of robotic control with dynamics randomization[C]. IEEE International Conference on Robotics and Automation, 2018: 1-8. 

Gupta A, Devin C, Liu Y X, et al. Learning invariant feature spaces to transfer skills with reinforcement learning[DB/OL]. arXiv:1703.02949. 

案例三,环境动态表现出高度 non-stationary 特性的任务,如推荐系统、定价

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
针对过分分布的普遍化:一项调查 "towards out of distribution generalization: a survey"是一项对过分分布普遍化现象的研究。该研究关注如何处理机器学习中的模型在训练过程中未曾遇到的情况下的泛化能力。 当前,机器学习中的模型往往在面对与训练数据不同的情况时出现问题。这些情况被称为"分布外"或"过分分布"。过分分布问题在现实世界的应用中非常普遍,例如在医学影像诊断中,模型在对未见过的病例进行预测时可能出现错误。 为了改善过分分布问题,该调查着重研究了几种处理方法。首先,一种方法是使用生成对抗网络(GAN)。GAN可以通过学习未见过的数据分布来生成合成样本,从而提高模型的泛化性能。其次,该调查还介绍了自监督学习和深度对比学习等技术。这些方法通过引入自动生成标签或学习新的特征表示来增强模型的泛化能力。 此外,该调查提到了一些用于评估模型在过分分布上泛化能力的评估指标。例如,置信度和不确定性度量可以帮助评估模型对于不同类别或未知样本的预测是否可信。同时,模型的置换不变性和鲁棒性也是评估模型泛化能力的重要因素。 总结来说,这项调查对于解决过分分布普遍化问题提供了一些有益的方法和指导。通过使用生成对抗网络、自监督学习和深度对比学习技术,以及评估模型的不确定性和鲁棒性,我们可以提高模型在未曾遇到的情况下的泛化能力。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值