Designing GANs:又一个GAN生产车间

本文深入探讨了一篇新的论文《Designing GANs: A Likelihood Ratio Approach》,该论文提出了与f-GAN不同的GAN构建方法。尽管f-GAN通过找到满足特定条件的函数f来构建概率散度,而新方法则直接在对偶空间中分析,最终达到相同的目标。通过求导和极值理论,文章展示了如何设计和理解不同的GAN模型,包括Total Variation距离的例子。尽管这种方法最终与f-GAN的某些结果重叠,但它提供了在对偶空间内直接分析GAN的新视角,并能够导出一些f-GAN无法得到的模型。论文作者通过一系列数学推导,展示了一种更为直接的设计GAN的途径,强调了理解这一过程的重要性,而不仅仅是关注生成的结果。
摘要由CSDN通过智能技术生成

©PaperWeekly 原创 · 作者|苏剑林

单位|追一科技

研究方向|NLP、神经网络

在 2018 年的文章里 f-GAN 简介:GAN 模型的生产车间笔者介绍了 f-GAN,并评价其为 GAN 模型的“生产车间”,顾名思义,这是指它能按照固定的流程构造出很多不同形式的 GAN 模型来。

前几天在 arXiv 上看到了新出的一篇论文 Designing GANs: A Likelihood Ratio Approach(后面简称 Designing GANs 或原论文),发现它在做跟 f-GAN 同样的事情,但走的是一条截然不同的路(不过最后其实是殊途同归),整篇论文颇有意思,遂在此分享一番。

论文链接:https://arxiv.org/abs/2002.00865

f-GAN回顾

从 f-GAN 简介:GAN 模型的生产车间中我们可以知道,f-GAN 的首要步骤是找到满足如下条件的函数 f:

  • f 是非负实数到实数的映射(); 

  • f(1)=0 ; 

  • f 是凸函数。 

找到这样的函数后,就可以构造一个概率 f 散度出来,然后用一种称为“凸共轭”的技术将 f 散度转化为另一种形式(带 max 的形式,一般称为对偶形式),然后去 min 这个散度,就得到一个 min-max 过程,这便诞生了一种 GAN 模型。

顺便说一下,f-GAN 代表了一系列 GAN 模型,但不包含 WGAN,不过 WGAN的推导其实也遵循着类似的步骤,只不过它用到的概率度量是 Wasserstein 距离,并且 Wasserstein 距离转化为对偶形式的方法不一样,具体细节可以参考从 Wasserstein 距离、对偶理论到 WGAN。 

f-GAN 在逻辑上并没有问题,但是根据它提供的步骤,我们总是需要先找到一个 f 散度,然后再转化为对偶形式。问题就是:既然我们只需要它的对偶形式,为什么不直接在对偶空间里边分析呢?

这个疑问笔者之前在文章不用 L 约束又不会梯度消失的 GAN,了解一下?,只不过在当时只是讨论了在对偶空间中概率散度的证明,并没有给出概率散度的构建方法,而 Designing GANs 正是补充了这一点。

Designing GANs

在这一节里,我们会探讨 Designing GANs 里边的思路和方法。不同于原论文中比较冗余的教科书式推导,本文将会通过逐步反推的过程来导出 Designing GANs 的结果,笔者认为这样更容易理解一些。有意思的是,理解整个推导过程事实上只需要非常基础的微积分知识。 

Total Variation

这里以一个称为 Total Variation 的概率散度为例子,让我们初步体会一下在对偶空间里边分析推导概率散度的要点。 

首先,我们有:

所以对于概率分布 p(x), q(x),我们也有:

两边积分得(我们先不纠结积分和 max 的交换性):

这里的 ∫|p(x)−q(x)|dx 就称为两个概率分布的 Total Variation,所以我们就通过这样的过程导出了 Total Variation 的对偶形式。如果固定 p(x),让 q(x) 逼近 p (x),那么就可以最小化 Total Var

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
图像识别技术在病虫害检测中的应用是一个快速发展的领域,它结合了计算机视觉和机器学习算法来自动识别和分类植物上的病虫害。以下是这一技术的一些关键步骤和组成部分: 1. **数据收集**:首先需要收集大量的植物图像数据,这些数据包括健康植物的图像以及受不同病虫害影响的植物图像。 2. **图像预处理**:对收集到的图像进行处理,以提高后续分析的准确性。这可能包括调整亮度、对比度、去噪、裁剪、缩放等。 3. **特征提取**:从图像中提取有助于识别病虫害的特征。这些特征可能包括颜色、纹理、形状、边缘等。 4. **模型训练**:使用机器学习算法(如支持向量机、随机森林、卷积神经网络等)来训练模型。训练过程中,算法会学习如何根据提取的特征来识别不同的病虫害。 5. **模型验证和测试**:在独立的测试集上验证模型的性能,以确保其准确性和泛化能力。 6. **部署和应用**:将训练好的模型部署到实际的病虫害检测系统中,可以是移动应用、网页服务或集成到智能农业设备中。 7. **实时监测**:在实际应用中,系统可以实时接收植物图像,并快速给出病虫害的检测结果。 8. **持续学习**:随着时间的推移,系统可以不断学习新的病虫害样本,以提高其识别能力。 9. **用户界面**:为了方便用户使用,通常会有一个用户友好的界面,显示检测结果,并提供进一步的指导或建议。 这项技术的优势在于它可以快速、准确地识别出病虫害,甚至在早期阶段就能发现问题,从而及时采取措施。此外,它还可以减少对化学农药的依赖,支持可持续农业发展。随着技术的不断进步,图像识别在病虫害检测中的应用将越来越广泛。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值