GAN应用之数据生成,无监督深度学习新方法(3)

本文介绍了GAN在数据生成中的应用,从Conditional GAN(CGAN)到Inference GAN(InfoGAN),再到Pyramid GAN和Cross Domain学习。CGAN通过加入标签信息实现对生成结果的控制,InfoGAN则引入可解释的隐变量以约束生成属性。Pyramid GAN通过逐级训练提高生成高分辨率图像的能力。Cross Domain学习则允许在无对应样本情况下学习联合分布,如苹果simGAN优化仿真数据。此外,还提及了一些创新应用,如创意艺术风格生成、T恤设计和人脸正脸化。
摘要由CSDN通过智能技术生成

3.1 从GAN到Conditional GAN

GAN的生成式模型可以拟合真实分布,所以它可以用于伪造数据。DCGAN是第一个用全卷积网络做数据生成的,下面是它的基本结构和生成的数据。
GAN应用之数据生成
GAN应用之数据生成
输入100维的噪声,输出64*64的图像,从mnist的训练结果来看,还不错。笔者也用DCGAN生成过嘴唇表情数据,也是可用的。

但是它的问题是不能控制生成的数字是1还是9,所以后来有了CGAN,即条件GAN,网络结构如下。
GAN应用之数据生成
它将标签信息encode为一个向量,串接到了D和G的输入进行训练,优化目标发生了改变。
GAN应用之数据生成

与cgan类似,infogan将噪声z进行了拆解,一是不可压缩的噪声z,二是可解释的隐变量c,可以认为infogan就是无监督的cgan,这样能够约束c与生成数据之间的关系,控制一些属性,比如旋转等。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值