3.1 从GAN到Conditional GAN
GAN的生成式模型可以拟合真实分布,所以它可以用于伪造数据。DCGAN是第一个用全卷积网络做数据生成的,下面是它的基本结构和生成的数据。
输入100维的噪声,输出64*64的图像,从mnist的训练结果来看,还不错。笔者也用DCGAN生成过嘴唇表情数据,也是可用的。
但是它的问题是不能控制生成的数字是1还是9,所以后来有了CGAN,即条件GAN,网络结构如下。
它将标签信息encode为一个向量,串接到了D和G的输入进行训练,优化目标发生了改变。
与cgan类似,infogan将噪声z进行了拆解,一是不可压缩的噪声z,二是可解释的隐变量c,可以认为infogan就是无监督的cgan,这样能够约束c与生成数据之间的关系,控制一些属性,比如旋转等。