PW Live 直播 | 清华大学王晓智:事件抽取的进展与挑战

「PW Live」是 PaperWeekly 的学术直播间,旨在帮助更多的青年学者宣传其最新科研成果。我们一直认为,单向地输出知识并不是一个最好的方式,而有效地反馈和交流可能会让知识的传播更加有意义,从而产生更大的价值。

随着互联网信息爆炸式的增长,从非结构化的信息中提取出有用的结构化信息显得越来越重要,信息抽取任务便应运而生。事件抽取作为信息抽取任务中重要且富有挑战的一个研究方向,旨在将无结构化文本中的事件以及事件所涉及到的人物、时间、地点等元素准确地抽取出来并以结构化的形式呈现,在自动文摘、自动问答、信息检索等领域有着广泛的应用。


本期 PW Live,我们邀请到来自清华大学自然语言处理与社会人文计算实验室的本科生王晓智,为大家带来事件抽取的进展与挑战的主题分享。

对事件抽取感兴趣的小伙伴,3 月 26 日(本周四)晚 8 点,我们准时相约 PaperWeekly B 站直播间。

分享提纲

文本事件抽取旨在从无结构纯文本中抽取出结构化的事件知识,是信息抽取的一项核心任务,也正在受到越来越多的关注。近年来随着神经网络等技术的发展,事件抽取任务的表现取得了长足的进步,但仍面临许多重要挑战。

本次报告我将分享事件抽取任务的基础知识和它面临的一些主要挑战,并介绍我们针对这些挑战做出的一些探索和最新工作。

本次分享的具体内容有:

  • 事件抽取任务的背景

  • 事件抽取面临的挑战

  • 基于对抗训练的弱监督事件检测

  • 基于层次化模块神经网络的事件要素抽取

嘉宾介绍

 王晓智 / 清华大学本科生 

王晓智,清华大学大四本科生,师从李涓子教授和刘知远副教授。主要研究方向为自然语言处理和知识图谱。已在 NAACL、EMNLP、COLING 等自然语言处理顶级会议发表数篇论文。

直播地址 & 交流群

本次直播将在 PaperWeekly B 站直播间进行,扫描下方海报二维码点击阅读原文即可免费观看。线上分享结束后,嘉宾还将在直播交流群内实时 QA,在 PaperWeekly 微信公众号后台回复「PW Live」,即可获取入群通道

B 站直播间:

https://live.bilibili.com/14884511

合作伙伴

????

现在,在「知乎」也能找到我们了

进入知乎首页搜索「PaperWeekly」

点击「关注」订阅我们的专栏吧

关于PaperWeekly

PaperWeekly 是一个推荐、解读、讨论、报道人工智能前沿论文成果的学术平台。如果你研究或从事 AI 领域,欢迎在公众号后台点击「交流群」,小助手将把你带入 PaperWeekly 的交流群里。

发布了415 篇原创文章 · 获赞 567 · 访问量 91万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览