TKDE 2020 | 面向严格冷启动推荐的属性图神经网络

本文提出了一种属性图神经网络(AGNN)方法,以解决推荐系统中严格冷启动问题,即新用户/商品无历史交互数据的情况。AGNN通过属性图学习用户和商品的偏好表示,利用eVAE从属性分布中推断偏好,并使用gated-GNN进行邻居信息的精确聚合。实验表明,AGNN在严格冷启动推荐任务中表现优越,优于传统和基于GNN的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

©PaperWeekly 原创 · 作者|梁贻乐

学校|武汉大学硕士生

研究方向|推荐系统

 

 

本文的主要贡献在于区分了推荐系统中的一般冷启动和严格冷启动,并提出了属性图神经网络方法有效应对严格冷启动的场景。基于属性或内容的推荐方法是应对新物品冷启动问题的经典手段,图神经网络可加强对邻居信息的利用,合适的网络结构使两者的效用得以充分发挥。大量实验证明该文方法为解决严格冷启动问题提供了一种可行的途径。

本文还对常用的 MovieLens 公开数据集进行了拓展,从 IMDb 网站为每部电影补充了导演、编剧、演员、国家等属性信息,拓展后的新数据集公布在下方链接,论文代码也已同时公布,可为后续研究基于属性的推荐方法提供参考。

论文标题:

Attribute Graph Neural Networks for Strict Cold Start Recommendation

论文作者:

钱铁云(武汉大学)、梁贻乐(武汉大学)、李青(香港理工大学)、熊辉(新泽西州罗格斯大学)

论文链接:

https://ieeexplore.ieee.org/document/9261110

代码及数据链接:

https://github.com/NLPWM-WHU/AGNN

 

摘要:评分预测是推荐系统的经典问题,近年来,基于深度学习的方法,特别是图神经网络在该问题上取得了显著进展。然而现有方法主要利用用户-商品的交互关系建模,其模型性能取决于交互的稠密度,而用户-商品的交互通常都是高度稀疏的。更严重的是,对于训练和测试阶段均无交互的严格冷启动用户/商品,已知方法很难获知该用户/商品的偏好表示。

针对上述挑战,我们提出了一个新框架 Attribute Graph Neural Networks(AGNN),利用属性图而不是交互图为严格冷启动用户/商品提供了学习表示的能力。AGNN 通过扩展的变分自编码器(eVAE)学习属性的分布,并为严格冷用户/商品生成偏好表示。

此外,我们设计了一个图神经网络变体 gated-GNN,用来有效聚合邻居中不同模态的各类属性。论文在三个真实数据集上进行实验,结果表明 AGNN 对严格冷启动推荐有显著的提升作用,其性能胜出已知常规方法、归纳式学习方法、元学习方法,以及图神经网络方法,在暖启动场景下也具有比现有方法更优或一致的性能。

 


引言

评分预测的目标是预测用户对商品的打分,常规的矩阵分解为每个用户/商品学习偏好表示,但在数据稀疏以及更极端的冷启动条件下(即严格冷启动:指新的用户/商品没有出现在任何训练数据中,且测试阶段也没有任何已知交互),其性能会迅速下降。


近年来,图神经网络(GNN)的发展为经典的评分预测问题提供了新的思路。然而,现有 GNN 类方法几乎都建立在用户-商品二部图上,其中节点表示用户/商品,边表示二者之间的交互,因此在没有交互边存在的严格冷启动场景下,上述 GNN 类方法难以奏效。

我们提出利用属性图来代替用户-商品交互图,并设计了一个新的框架—属性图神经网络(AGNN),使得对于严格的冷启动用户/商品也可以利用自身属性产生图结构。我们用图 1 的例子来阐述模型动机。

图 1 展示了用户对不同电影的历史评分行为。当一部新电影“Avengers”上映时,由于其没有包含在训练集中、且没有任何交互信息,属于严格的冷启动商品,预测用户对该电影的评分非常困难。幸运的是,电影存在诸如导演、类别等属性信息,此外具有相似属性的电影可以形成一个图结构,用于传递偏好信息,例如从“Captain America”到“Avengers”。用户的属性也可类似处理。

在属性图的框架下,如何将属性表示转换为偏好表示、以及如何在邻居节点中聚合不同模态的各类属性是亟待解决的关键问题。为此我们提出了 eVAE 结构,用于从冷启动节点的属性分布中推断其偏好表示,我们还设计了 gated-GNN 结构,用于聚合不同属性的邻居节点时获取更精准的权重分配。


问题定义

给出用户-商品评分矩阵

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值