从三篇经典论文看时空数据挖掘任务中的自适应图学习

本文回顾了基于图神经网络的时空预测研究,探讨了自适应图学习方法,包括Graph WaveNet、AGCRN和MTGNN,它们通过节点嵌入计算节点间关联,动态调整图结构,以适应不同任务的需求。
摘要由CSDN通过智能技术生成

1ff3bddb816663648f155b0263e18ec4.gif

©PaperWeekly 原创 · 作者 | 西南交一枝花

单位 | 西南交通大学CCIT实验室

研究方向 | NLP、时空数据挖掘

想介绍此类相关的方法已有一段时间,最近整理论文工作,借此机会,分享一下。

df1b0f870d6939dce90ace5577a8d8a2.png

引言

目前图神经网络在时空数据挖掘领域取得了突出表现,主要得力于捕获空间依赖能力的增强。一句话可以总结为:将时空任务中的空间依赖建模为图结构(如,在交通流预测任务中,将传感器视为图中节点,不同节点之间的路网连接关系视为图中边),然后基于图神经网络计算节点之间的空间关联表示,再通过捕获时序依赖(如,循环神经网络、膨胀卷积等),完成时空任务建模。目前,该任务的研究热点主要在图结构表示以及空间依赖捕获

be80fb7fae5c753b98b6b3673056ce2a.png

动机

图结构表示,如邻接矩阵,可以表示节点之间的相邻关系。在时空挖掘场景中,如交通流任务中可以通过路网拓扑表示传感器之间的相邻关系,可以通过欧氏距离度量;地铁交通流任务中可以通过地铁线路图表示站点之间的相邻关系。此类图结构表示可以看作是预定义图(Pre-defined graph)或者说固定图(Fixed graph),即通过先验知识定义的图结构或者说是既定图结构。

但是,在某些研究任务中没有预定的图结构,或者说此类预定义图结构无法完全表示节点之间的相邻关系。为解决上述问题,有学者提出自适应图结构学习,即构造一个参数化的邻接矩阵,在随机梯度优化过程中不断地调整邻接矩阵。

f2c12936976c1d12cfdd33d911803876.png

方法

本小节将着重介绍模型如何通过端到端方式学习邻接矩阵。目前常用的方法可以概括为:初始化的节点嵌入表示,通过<

  • 1
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值