基于图模型的多视图学习——自适应图学习方法

自适应图学习方法是一种在图结构数据上进行机器学习的技术,它能够自动调整图的结构或权重,以便更好地反映数据的真实关系和属性。

这种方法在许多领域都有应用,比如社交网络分析、生物信息学、推荐系统、计算机视觉等。

自适应图学习通常涉及图神经网络(GNN)、图卷积网络(GCN)或其他基于图的模型。

基本概念

在自适应图学习中,图的表示通常包括节点特征边权重以及整个图的结构

自适应图学习方法旨在通过学习过程来优化这些表示,以提高下游任务的性能,如节点分类、链接预测或图分类。

自适应图学习的公式示例

图卷积网络(GCN)的自适应版本

考虑一个图 G = ( V , E ) G = (\mathcal{V}, \mathcal{E}) G=(V,E) ,其中 V \mathcal{V} V节点集 E \mathcal{E} E边集

每个节点 v ∈ V v \in \mathcal{V} vV 有一个特征向量 x v \mathbf{x}_v xv ,并且图有一个邻接矩阵 A \mathbf{A} A

在标准的GCN中,节点特征的更新规则可以表示为:

H ( k + 1 ) = σ ( D ~ − 1 2 A ~ D ~ − 1 2 H ( k ) W ( k ) ) \mathbf{H}^{(k+1)} = \sigma (\tilde{\mathbf{D}}^{-\frac{1}{2}} \tilde{\mathbf{A}} \tilde{\mathbf{D}}^{-\frac{1}{2}} \mathbf{H}^{(k)} \mathbf{W}^{(k)}) H(k+1)=σ(D~21A~D~21H(k)W(k))

其中,

  • H ( k ) \mathbf{H}^{(k)} H(k) 是第 k k k 层的隐藏状态矩阵 H ( 0 ) = X \mathbf{H}^{(0)} = \mathbf{X} H(0)=X输入特征矩阵
  • W ( k ) \mathbf{W}^{(k)} W(k) 是第 k k k 层的权重矩阵
  • A ~ = A + I \tilde{\mathbf{A}} = \mathbf{A} + \mathbf{I} A~=A+I加上自环后的邻接矩阵。
  • D ~ \tilde{\mathbf{D}} D~ A ~ \tilde{\mathbf{A}} A~ 对应的度矩阵。
  • σ \sigma σ 是激活函数,如ReLU。
自适应版本

在自适应图学习中,邻接矩阵 A \mathbf{A} A 或其变体 A ~ \tilde{\mathbf{A}} A~ 可能会通过学习过程进行更新,以更好地反映节点之间的关系。

这通常涉及到学习边权重或整个图结构。

自适应邻接矩阵 A ^ \mathbf{\hat{A}} A^ 可以表示为:

A ^ = f ( X , Θ ) \mathbf{\hat{A}} = f(\mathbf{X}, \Theta) A^=f(X,Θ)
其中,

  • f f f 是一个可学习的函数,它通常是一个神经网络。
  • X \mathbf{X} X节点特征矩阵。
  • Θ \Theta Θ f f f 的参数。

自适应图对比学习

在自适应图对比学习中,模型通过对比不同视图中的节点表示来学习图的表示。

这通常涉及生成图的不同增强版本,然后用对比损失函数训练模型。

对比损失函数可以表示为:

L = − log ⁡ exp ⁡ ( s ( z i a , z i b ) / τ ) ∑ j ≠ i exp ⁡ ( s ( z i a , z j b ) / τ ) L = -\log \frac{\exp(s(\mathbf{z}_i^a, \mathbf{z}_i^b)/\tau)}{\sum_{j \neq i} \exp(s(\mathbf{z}_i^a, \mathbf{z}_j^b)/\tau)} L=logj=iexp(s(zia,zjb)/τ)exp(s(zia,zib)/τ)

其中,

  • z i a \mathbf{z}_i^a zia z i b \mathbf{z}_i^b zib同一个节点在两个不同增强视图中的表示。
  • s ( ⋅ , ⋅ ) s(\cdot, \cdot) s(,) 是一个相似度度量通常是内积。
  • τ \tau τ 是温度参数,控制着分布的锐度。
  • L L L 是对比损失,它鼓励同一节点在不同视图中的表示接近,同时将它们与不同节点的表示分开。

总结

自适应图学习方法的核心在于它们能够动态地调整图的结构或权重,以更好地适应数据的潜在特性。

通过这种方式,模型可以学习到更精确和更有效的图表示,从而提高在各种图相关任务上的性能。

  • 21
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不易撞的网名

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值