自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(13)
  • 收藏
  • 关注

原创 交通网络多步速度预测:一种考虑时空相关性的深度学习方法

本文提出了一种新的深度学习结构,即注意图卷积序列到序列模型(AGC-Seq2Seq),将图卷积网络和注意机制集成到Seq2Seq框架中,以开发能够描述多步流量预测中时空相关性的预测模型。考虑到Seq2Seq模型的现有训练方法不适用于时间序列问题,我们在此提出的框架中设计了一种新的训练方法。AGC-Seq2Seq,该框架通过Seq2Seq模型和图卷积层从时空域协同提取特征。为了克服多步预测的挑战并捕获城市交通模式的时间异质性,模型中进一步引入了注意机制。为Seq2Seq框架设计了一种新的训练方法,旨在多步

2022-05-21 11:34:27 982 1

原创 用于交通流预测的时间多图卷积网络

为了联合建模道路网络中各种全局特征的空间、时间和语义关联,本文提出了一种用于交通流预测的深度学习框架T-MGCN(时态多图卷积网络)。首先,我们识别了几种语义关联,并将道路之间的非欧几里德空间关联和异构语义关联编码为多个图。后用多图卷积网络对这些相关性进行建模。其次,使用递归神经网络学习交通流的动态模式,以捕获时间相关性。第三,利用全连通神经网络融合时空相关性和全局特征。(i) 空间相关性。交通流由底层道路网络的拓扑结构决定。一条道路的交通流将极大地影响其相邻道路的交通流。(ii)时间相关性。交通状况随

2022-05-15 15:25:58 1543

原创 用于交通预测的自适应图卷积递归网络

交通预测最近的工作主要集中在设计复杂的图神经网络结构,借助预定义的图来捕获共享模式。本文认为学习特定于节点的模式对于交通预测至关重要,而预定义的图是可以避免的。我们提出了两个自适应模块来增强图卷积网络(GCN)的新功能:1)节点自适应参数学习(NAPL)模块,捕获特定于节点的模式;2) 数据自适应图生成(DAGG)模块,用于自动推断不同交通序列之间的相互依赖关系。提出了一种自适应图卷积递归网络(AGCRN)。基于这两个模块和递归网络自动捕获交通序列中的细粒度空间和时间相关性。传统方法只是应用时间序列模型

2022-05-14 14:56:52 1210 1

原创 一种融合局部和全局空间相关性的交通预测混合模型

目前的预测方法大多侧重于学习局部空间相关性,而忽略了长距离交通流的空间相关性。在本文中,我们将改进的图卷积网络(GCN)与门控递归单元(GRU)相结合,提出了一种融合局部和全局空间相关(T-LGGCN)的交通预测混合模型该模型由全局时空分量和局部时空分量两部分组成。对于全局时空分量,我们构造了全局相关矩阵(不管传感器的物理连通性如何,使用相关性方法分析任意两个传感器之间的相关性,构建全局相关矩阵)来改进GCN以获得全局空间相关性。然后堆叠GRU得到全局时空相关性。对于局部时空分量,利用完全连接层(FCL

2022-05-11 20:56:58 1505

原创 用于深层时空图建模的 Graph WaveNet

时空图建模可用于分析空间关系和时间趋势。现有的方法大多捕捉固定图形结构上的空间依赖性,假设实体之间的底层关系是预先确定的。显式图结构(关系)不一定反映真实的依赖关系。且现有的方法对于捕捉时间趋势是无效的,因为其使用的RNN或CNN不能捕获长时间序列。本文提出了一种新的用于时空图建模的图神经网络结构Graph WaveNet。开发一种新的自适应依赖矩阵并通过节点嵌入进行学习,故可以捕获数据中隐藏的空间依赖。Graph WaveNet具有一个堆叠的扩展一维卷积组件,其感受野随着层数的增加呈指数增长,能够处理非常

2022-05-10 19:55:26 1520

原创 时空图卷积网络:一种用于交通预测的深度学习框架

由于交通流的高度非线性和复杂性,传统方法不能满足中长期预测任务的要求,其往往忽略了空间和时间依赖性。在本文中,我们提出了一种新的深度学习框架,时空图卷积网络(STGCN),以解决交通领域的时间序列预测问题(即交通预测)。我们不使用正则卷积和循环单元,而是在图上描述问题,并建立具有完整卷积结构的模型,这使得训练速度更快,参数更少。交通研究中,交通流的基本变量,即速度、交通量和密度,通常被选为监测交通状况的当前状态的和预测未来的指标。根据预测的长度,交通预测通常分为两个尺度:短期(5∼ 30分钟),中长期(

2022-05-08 20:30:08 6635 1

原创 GMAN:一种用于交通预测的图多注意网络

交通预测问题:旨在根据历史观察(由传感器记录),来预测道路网络中的未来交通状况(如交通量或速度)。附近地区的交通状况会相互影响。为捕获这种空间相关性,卷积神经网络被广泛应用。同时,一个地点的交通状况也与其历史观测值相关。循环神经网络被广泛应用来建模这种时间相关。最近的研究将交通预测描述为一个图建模问题,因为交通状况限制在道路网络图上。使用图卷积网络(GCN)研究在短期(提前5-15分钟)交通预测内取得了有希望的结果,长期交通预测(未来几个小时)仍缺乏有效进展,主要原因是:1.复杂的时空相关性 (1)..

2022-05-07 10:34:45 3236

原创 EIGNN:高效无限深度图神经网络

大多数现代GNN模型遵循一种“消息传递”方案:它们将每个节点的隐藏表示与相邻节点的隐藏表示迭代聚合,以生成新的隐藏表示,其中每个迭代被参数化为具有可学习权重的神经网络层。图神经网络由于其固有的有限聚合层,现有的GNN模型可能无法有效地捕获底层图中的远程依赖关系。给定T层的GNN模型,其一般来说无法捕获给定节点T跳以上的依赖关系。捕获远程依赖关系的一个简单策略是堆叠大量GNN层,以便从远程节点接收“消息”。然而,当堆叠超过几层时性能较差,称为过度平滑。随着深度的增加,节点表示变得难以区分。除了过度平滑外,

2022-05-03 15:37:55 298

原创 Neural Trees for Learning on Graphs用于图形学习的神经树

现有的GNN仍受到其本地消息传递体系结构的限制,并且其表达能力受到了可证明的限制。在这项工作中,我们提出了一种新的GNN架构——神经树。神经树结构不在输入图上执行消息传递,而是在从输入图构造的树结构图上执行消息传递,称为H树。H-树中的节点对应于输入图中的子图,它们以分层方式重新组织,使得H-树中节点的父节点始终对应于输入图中较大的子图。我们证明了神经树结构可以逼近无向图上的任何光滑概率分布函数。还证明了实现分布函数的近似需要参数的数目对输入图的树宽呈指数,对输入图的大小呈线性。我们证明了任何连续的G-不变

2022-05-01 20:14:41 759

原创 具有自适应残差的图神经网络

GNN消息传递中的残差连接有助于提高性能,但它们极大地增强了GNN对异常节点特征的脆弱性。神经系统传递框架。本文首先对具有代表性的GNN模型在具有异常特征的图上的行为进行了实证研究。实验发现:(1)特征聚合可以提高对异常特征的恢复能力,但过多的聚合可能会影响正常和异常特征的性能;(2)残差连接有助于GNN从正常特征的更多层次中受益,同时使GNN对异常特征更脆弱。之后,提供可能的解释,从图拉普拉斯平滑的角度来理解这些观察到的现象。我们的分析表明,特征聚合和剩余连接之间可能存在内在的张力,这导致正常特征和异

2022-04-30 15:44:59 1076

原创 GNNAutoScale:通过历史嵌入的可伸缩和表达的图形神经网络

GNNAutoScale(GAS),是一个将任意MPGNN扩展到大型图的框架。GAS通过利用先前训练迭代中的历史嵌入来修剪计算图的整个子树,从而在不删除任何数据的情况下,保持输入节点大小方面的GPU内存消耗不变。我们的方法可以证明能够保持原始GNN的表达能力。我们通过提供历史嵌入的近似误差范围来实现这一点,并展示如何在实践中收紧它们。GNN目前困境:很难拓展到大型图上。假设可以访问所有层中的所有隐藏节点嵌入,虽然GNN中的完整梯度很容易计算,但由于GPU内存限制,这在大规模图形中是不可行的。故考虑用随机

2022-04-26 20:49:43 2939

原创 E(n)等变图神经网络

E(n) Equivariant Graph Neural Networks (EGNNs)一种新模型学习图神经网络,其对旋转、平移、反射、置换等变,不需要在中间层中计算昂贵的高阶表示。尽管现有方法仅限于三维空间上的等变,但我们的模型很容易扩展到高维空间。我们的方法在动态系统建模、图形自动编码器中的表示学习和预测分子性质方面的有效性。深度学习许多进步在很大程度上依赖于深度神经网络中的诱导/归纳偏差(inductive biases).将神经网络限制为相关函数的一种有效方法是利用问题的对称性,通过对来

2022-04-22 18:42:35 4539 2

原创 Graph Mixture Density Networks 图混合密度网络

是一类新的机器学习模型,可以适应条件为任意拓扑图的多模态输出分布。通过结合混合模型和图表示学习的思想,我们解决了一类更广泛的依赖结构化数据的具有挑战性的条件密度估计问题。我们在一个利用随机图进行随机流行病模拟的新基准应用程序上评估了我们的方法,显示了我们的方法在建模输出预测不确定性方面的有效性。图混合密度网络为研究具有非平凡条件输出分布的结构相关现象提供了的研究机会。以输入x为条件近似目标值y的分布是有监督学习任务的核心。已知有监督方法可以近似给定输入的目标的预期条件分布,即,当目标分布为单峰且目标值的

2022-04-22 14:43:37 625

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除