©PaperWeekly 原创 · 作者 | 鬼谷子
研究方向 | GAN图像生成、情绪对抗样本生成
引言
该论文是关于一篇对抗训练的文章,论文的代码已经开源。对抗训练是一种可以有效抵御对抗攻击的方法,然而其存在一个严重问题,即在训练过程中,模型会出现过拟合现象,PGD 攻击的鲁棒精度突然会下降到 0%。在该论文中,作者从一种新的优化角度来处理这个问题,作者首先揭示了每个样本的快速增长梯度与过拟合之间的密切联系,这也可以用于理解多步自适应算法中的过拟合现象。
为了控制梯度的增长,作者提出了一种新的对抗训练的方法,即子空间对抗训练,它将对抗训练约束在经过严谨提取的子空间中。实验结果显示,该方法成功地解决了这种模型过拟合问题,并显著提高了模型的鲁棒性,而且时间能耗上也比 PGD-10 小很多。
论文标题:
Subspace Adversarial Training
论文链接:
https://arxiv.org/abs/2111.12229
代码链接:
https://github.com/nblt/Sub-AT
相关介绍
对抗训练是目前抵御对抗攻击提高模型鲁棒性最有效的方法。给定一个带有参数 的神经网络 ,其中对抗训练数学形式如下所示ÿ