​CVPR 2022 | 子空间对抗训练

本文介绍了子空间对抗训练(Subspace Adversarial Training)方法,该方法旨在解决对抗训练中模型过拟合的问题。通过控制梯度在低维子空间内的增长,该方法能有效提高模型的鲁棒性,减少过拟合现象,并在不增加计算开销的前提下,展现出优于传统对抗训练的效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

aa3296eb133d1d24766ce49ca55b9014.gif

©PaperWeekly 原创 · 作者 | 鬼谷子

研究方向 | GAN图像生成、情绪对抗样本生成

42c0a7e5167891f83f2f2ab6d63f1316.png


引言

该论文是关于一篇对抗训练的文章,论文的代码已经开源。对抗训练是一种可以有效抵御对抗攻击的方法,然而其存在一个严重问题,即在训练过程中,模型会出现过拟合现象,PGD 攻击的鲁棒精度突然会下降到 0%。在该论文中,作者从一种新的优化角度来处理这个问题,作者首先揭示了每个样本的快速增长梯度与过拟合之间的密切联系,这也可以用于理解多步自适应算法中的过拟合现象。

为了控制梯度的增长,作者提出了一种新的对抗训练的方法,即子空间对抗训练,它将对抗训练约束在经过严谨提取的子空间中。实验结果显示,该方法成功地解决了这种模型过拟合问题,并显著提高了模型的鲁棒性,而且时间能耗上也比 PGD-10 小很多。

d22e53430fdb6689578775afd0439fb1.png

论文标题:

Subspace Adversarial Training

论文链接:

https://arxiv.org/abs/2111.12229

代码链接:

https://github.com/nblt/Sub-AT

8a990833a0d7a1d4fc4a9765b4643293.png

相关介绍

对抗训练是目前抵御对抗攻击提高模型鲁棒性最有效的方法。给定一个带有参数 的神经网络 ,其中对抗训练数学形式如下所示ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值