田渊栋团队最新研究:不到1000步微调,将LLaMA上下文扩展到32K

07a9ce7e0560c0fe3a27fa8a8205e22b.gif

©作者 | 张倩、小舟

来源 | 机器之心

增加大语言模型处理上下文窗口的能力,Meta 有妙招。

在大家不断升级迭代自家大模型的时候,LLM(大语言模型)对上下文窗口的处理能力,也成为一个重要评估指标。

比如 OpenAI 的 gpt-3.5-turbo 提供 16k token 的上下文窗口选项,AnthropicAI 的更是将 Claude 处理 token 能力提升到 100k。大模型处理上下文窗口是个什么概念,就拿 GPT-4 支持 32k token 来说,这相当于 50 页的文字,意味着在对话或生成文本时,GPT-4 最多可以记住 50 页左右内容。 

一般来讲,大语言模型处理上下文窗口大小的能力是预定好的。例如,Meta AI 发布的 LLaMA 模型,其输入 token 大小必须少于 2048。

然而,在进行长对话、总结长文档或执行长期计划等应用程序中,经常会超过预先设置的上下文窗口限制,因而,能够处理更长上下文窗口的 LLM 更受欢迎。

但这又面临一个新的问题,从头开始训练具有较长上下文窗口的 LLM 需要很大的投入。这自然引出一个疑问:我们能否扩展现有的预训练 LLM 的上下文窗口?

一种直接的方法是对现有的预训练 Transformer 进行微调,以获得更长的上下文窗口。然而,实证结果表明,使用这种方式训练的模型对长上下文窗口的适应速度非常慢。经过 10000 个批次的训练后,有效上下文窗口的增加仍然非常小,仅从 2048 增加到 2560(实验部分的表 4 可以看出)。这表明这种方法在扩展到更长的上下文窗口上效率低下。

本文中,来自 Meta 的研究者引入了位置插值(Position Interpolation,PI)来对某些现有的预训练 LLM(包括 LLaMA)的上下文窗口进行扩展。结果表明,LLaMA 上下文窗口从 2k 扩展到 32k,只需要小于 1000 步的微调

6edf1e7cd6a6baa62475e79eb6041687.png

论文链接:

https://arxiv.org/pdf/2306.15595.pdf

该研究的关键思想不是进行外推(extrapolation),而是直接缩小位置索引,使得最大位置索引与预训练阶段的上下文窗口限制相匹配。换句话说,为了容纳更多的输入 token,该研究在相邻的整数位置上插值位置编码,利用了位置编码可以应用于非整数位置的事实,与在训练过的位置之外进行外推相比,后者可能导致灾难性的数值。

88fe1903cf657d9acd8fc3ea413d061d.png

PI 方法将基于 RoPE(旋转位置编码)的预训练 LLM(如 LLaMA)的上下文窗口大小扩展到最多 32768,只需进行最小的微调(在 1000 个步骤内),这一研究在需要长上下文的各种任务上性能较好,包括密码检索、语言建模以及从 LLaMA 7B 到 65B 的长文档摘要。与此同时,通过 PI 扩展的模型在其原始上下文窗口内相对保持了较好的质量。

f7b37a19df91b5ced1deae80ed03e5e5.png

方法

在我们比较熟悉的 LLaMA、ChatGLM-6B、PaLM 等大语言模型中,都有 RoPE 身影,该方法由追一科技苏剑林等人提出,RoPE 通过绝对编码的方式实现了相对位置编码。

虽然 RoPE 中的注意力得分只取决于相对位置,但它的外推性能并不好。特别是,当直接扩展到更大的上下文窗口时,困惑度可能会飙升到非常高的数字 (即 > 10^3)。

本文采用位置插值的方法,其与外推方法的比较如下。由于基函数 ϕ_j 的平滑性,插值更加稳定,不会导致野值。

edab57cb82e7d0f3b0ec39eaeabd684d.png

 该研究将 RoPE f 替换为 f ′,得到如下公式

90552c5b6f71f0a4f2d2c707dd1196ed.png

该研究将在位置编码上的转换称为位置插值。这一步将位置索引从 [0, L′ ) 缩减到 [0, L) ,以匹配计算 RoPE 前的原始索引范围。因此,作为 RoPE 的输入,任意两个 token 之间的最大相对距离已从 L ′ 缩减到 L。通过在扩展前后对位置索引和相对距离的范围进行对齐,减轻了由于上下文窗口扩展而对注意力分数计算产生的影响,这使得模型更容易适应。

值得注意的是,重新缩放位置索引方法不会引入额外的权重,也不会以任何方式修改模型架构。

d60711195c558e440d1f31663e302028.png

实验

该研究展示了位置插值可以有效地将上下文窗口扩展到原始大小的 32 倍,并且这种扩展只需进行几百个训练步骤即可完成。

表 1 和表 2 报告了 PI 模型和基线模型在 PG-19 、 Arxiv Math Proof-pile 数据集上的困惑度。结果表明使用 PI 方法扩展的模型在较长的上下文窗口大小下显著改善了困惑度。

7c8baa05a2f253406d1e1983167f62da.png

f8464f933330b46fdbbdbe0ac486b602.png

表 3 报告了在 PG19 数据集上使用 PI 方法,将 LLaMA 7B 模型扩展到 8192 和 16384 上下文窗口大小时的困惑度与微调步数之间的关系。

由结果可得,在没有微调的情况下(步数为 0),模型可以展现出一定的语言建模能力,如将上下文窗口扩展到 8192 时的困惑度小于 20(相比之下,直接外推方法的困惑度大于 10^3)。在 200 个步骤时,模型的困惑度超过了 2048 上下文窗口大小下原始模型的困惑度,表明模型能够有效利用比预训练设置更长的序列进行语言建模。在 1000 个步骤时可以看到模型稳步改进,并取得了更好的困惑度。

098f969e47a9383882bb970092fef9d7.png

下表表明,通过 PI 扩展的模型在有效上下文窗口大小方面都成功地实现了扩展目标,即仅通过微调 200 个步骤后,有效上下文窗口大小达到最大值,在 7B 和 33B 模型大小以及最高 32768 上下文窗口的情况下保持一致。相比之下,仅通过直接微调扩展的 LLaMA 模型的有效上下文窗口大小仅从 2048 增加到 2560,即使经过 10000 多个步骤的微调,也没有明显加速窗口大小增加的迹象。

f7a77770af25e27cdeb5de2d85e782ee.png

表 5 显示扩展到 8192 的模型在原始基准任务上产生了可比较的结果,而该基准任务是针对更小的上下文窗口设计的,对于 7B 和 33B 模型大小,在基准任务中的退化最多达到 2%。

a1dcabba89a59d2ce1819edf9de47307.png

表 6 表明,具有 16384 上下文窗口的 PI 模型,可以有效地处理长文本摘要任务。

0b488a8cc8c39f4bbe2bb5b7b7b388bd.png

更多阅读

6548c2e507b47a134c9a72a332bfdc10.png

75428c9dbf08b568deeb9c45fd0e0394.png

07f04f39a647dccddacf94ef08ecaff0.png

d933f8445c10915a1e0ddfff379867da.gif

#投 稿 通 道#

 让你的文字被更多人看到 

如何才能让更多的优质内容以更短路径到达读者群体,缩短读者寻找优质内容的成本呢?答案就是:你不认识的人。

总有一些你不认识的人,知道你想知道的东西。PaperWeekly 或许可以成为一座桥梁,促使不同背景、不同方向的学者和学术灵感相互碰撞,迸发出更多的可能性。 

PaperWeekly 鼓励高校实验室或个人,在我们的平台上分享各类优质内容,可以是最新论文解读,也可以是学术热点剖析科研心得竞赛经验讲解等。我们的目的只有一个,让知识真正流动起来。

📝 稿件基本要求:

• 文章确系个人原创作品,未曾在公开渠道发表,如为其他平台已发表或待发表的文章,请明确标注 

• 稿件建议以 markdown 格式撰写,文中配图以附件形式发送,要求图片清晰,无版权问题

• PaperWeekly 尊重原作者署名权,并将为每篇被采纳的原创首发稿件,提供业内具有竞争力稿酬,具体依据文章阅读量和文章质量阶梯制结算

📬 投稿通道:

• 投稿邮箱:hr@paperweekly.site 

• 来稿请备注即时联系方式(微信),以便我们在稿件选用的第一时间联系作者

• 您也可以直接添加小编微信(pwbot02)快速投稿,备注:姓名-投稿

f8ae71f4dc3b965a4398d6a8df0658ff.png

△长按添加PaperWeekly小编

🔍

现在,在「知乎」也能找到我们了

进入知乎首页搜索「PaperWeekly」

点击「关注」订阅我们的专栏吧

·

·

·

203ab14e14777bf3e6c0d68da776aa9f.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值