SuperAlignment in Medical Science: 中文医疗大模型评估基准CMB

本文介绍了CMB,一个全面的中文医疗模型评估基准,旨在通过选择题和临床诊断任务评估模型的医学知识和诊断能力。CMB包括CMB-Exam和CMB-Clin两个部分,分别针对模型的医学知识掌握和临床应用能力。实验结果显示,尽管GPT-4在医学领域表现出色,但中文医疗模型仍有很大提升空间。CMB提供了一种有参考答案和评分标准的评估方式,有助于加速模型迭代和医学大模型的发展。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

3377dfca642e33ef1c50087e14d57102.gif

©PaperWeekly 原创 · 作者 | 王熙栋

单位 | 香港中文大学(深圳)& 深圳市大数据研究院

研究方向 | NLP、医疗AI

近期,中文医疗大模型研发如火如荼,出现了很多有影响力的工作(BenTsao [7],MedicalGPT [4],Med-ChatGLM [5],HuatuoGPT [1] 等)。但是因为缺乏标准化的基准,进步的量化与模型的进一步迭代方向变得模糊。CMB 从临床医学工种职业发展过程中的真实考核出发,通过选择题和复杂病历问诊任务对模型医学知识和诊断能力进行了全面评估。我们真诚地希望,CMB 基准可以给医学大模型开发者提供细粒度足够高的反馈,加快模型迭代速度,推动中文医学领域语言模型进一步发展和应用。

b13a0ae2ef3bdc322ccaf133e6a55911.png

论文题目:

CMB: A Comprehensive Medical Benchmark in Chinese

论文链接:

https://arxiv.org/abs/2308.08833

代码链接:

https://github.com/FreedomIntelligence/CMB

官网链接:

https://cmedbenchmark.llmzoo.com/

af3d917e535b6f811934beb8c6e8a89b.png

研究背景

医疗技术的进步极大地延长了人类的寿命。医学依赖于知识和经验,而语言模型依赖于数据,这种一致性给予了医学大模型帮助缓解医疗资源短缺的可能性。

虽然医学 LLM 应用前景广阔,模型的评估仍有许多挑战,在医院中部署 LLM 会带来重大的伦理问题,使得实际反馈变得困难。现有的模型评价通常使用自动评估(GPT-4),考虑到医疗的准确性和专业性要求,这种没有参考答案的评估欠缺说服力。而专业的人工评判昂贵而不易扩大规模。

BioLAMA 拥有参考答案,但它是为了评估掩码语言模型而不是自回归模型。MultiMedBench 包括问题解答、报告总结、视觉问题回答、报告生成和医疗图像分类,但 MultiMedBench 只有英文版本,直接翻译一方面需要对中英文医学和文化有深入了解,另一方面难以覆盖中医医学知识。

1acac7dbfdefca6645d0c873d8fc9a3a.png

为此,我们提出了中文医疗模型评估基准 CMB,其包括了不同临床职业、不同职业阶段考试中的多项选择题(CMB-Exam)和基于真实病例的复杂临床诊断问题(CMB-Clin)。通过测评实验,我们发现:

在园区网建设过程中,我们常常面临诸多实际挑战,例如网络设计、IP规划、成本控制以及项目管理等。而名为“园区网的真实案例.zip”的压缩包文件提供了大量实用资源,包括真实园区网案例、综合实验拓扑图、相关脚本和项目需求分析等,这些资料对于理解和实践园区网建设具有重要意义。我们重点关注其中的“园区网综合实验”部分。 园区网是在学校、企业或政府机构等相对封闭区域内构建的网络,旨在为区域内用户提供高效、安全的数据通信服务。综合实验则是为了模拟真实环境,帮助学习者掌握园区网设计的关键技术和步骤,通常涵盖网络设备选择与配置、VLAN划分、路由协议应用、QoS策略设定以及安全防护措施等内容。压缩包中的“最终”文件可能包含了项目实施的最终成果,如经过验证的网络设计方案、配置脚本或项目总结报告,这些资料有助于我们将理论知识转化为实际可执行的方案。 “命令”文件则可能包含了用于配置网络设备的CLI指令,涉及交换机和路由器的基本配置,如VLAN设置、端口安全、静态路由或动态路由协议(如OSPF、RIP等)。通过研究这些命令,我们可以学习如何根据不同场景正确配置网络设备,以满足业务需求。 IP规划是园区网建设中的关键任务,合理的IP规划能够避免地址冲突,便于管理和维护。案例中可能会展示如何根据园区规模、功能区划分及未来扩展需求制定合适的IP地址策略。成本控制同样重要,园区网建设不仅涉及设备购置费用,还包括安装、运维、升级等长期成本。案例可能探讨如何在满足功能需求的同时,选择性价比高的设备,优化布线方案,并通过节能技术降低运营成本。 项目总结则是对整个实施过程的回顾,涵盖遇到的问题、解决方案、经验教训及改进点,对提升项目管理能力和问题解决技巧非常有帮助。这个压缩包的内容全面覆盖了园区网设计、建设和管理的多个方面,是学习和实践网络技术的宝贵资源。通过深入研究这些材料,我们可以提升网络规划和实施能力,更好
内容概要:本文档《Grafana运维指南:从入门到精通》详细介绍了Grafana这一开源度量分析和可视化工具的各个方面。首先解释了Grafana在数据监控和分析中的重要性,强调其开源、可视化、多数据源支持、告警功能、灵活的仪表盘管理和丰富的插件生态系统等特点。接着,文档逐步讲解了Grafana的安装与配置,包括系统准备、初始配置和数据源配置等步骤。随后,深入探讨了数据源管理、仪表盘操作、插件使用等核心功能,提供了详细的配置和使用指南。最后,文档介绍了性能优化、安全管理、日志分析等日常运维要点,并通过一个实际案例展示了Grafana在大型电商平台运维中的应用价值。 适用人群:适用于运维人员、系统管理员、开发人员以及任何需要进行数据监控和分析的专业人士,尤其是那些对Grafana有一定了解或有兴趣深入了解的人群。 使用场景及目标:①帮助用户掌握Grafana的安装配置和基本使用方法;②指导用户如何整合多种数据源,创建和管理仪表盘;③提供性能优化、安全管理等方面的建议,确保Grafana在实际应用中的高效稳定运行;④通过实际案例分享,展示Grafana在复杂业务环境中的应用效果,提升用户对Grafana的理解和应用能力。 其他说明:本文档不仅涵盖了Grafana的基础知识和技术细节,还结合实际案例,帮助读者更好地理解和应用Grafana。建议读者在学习过程中结合实际操作,通过实践加深对Grafana的理解。此外,文档鼓励读者参与社区交流,分享经验和心得,共同进步。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值