©PaperWeekly 原创 ·作者 | 梁远智
单位 | 悉尼科技大学
研究方向 | 具身智能
论文标题:
MAAL: Multimodality-Aware Autoencoder-based Affordance Learning for 3D Articulated Objects
论文链接:
https://openaccess.thecvf.com/content/ICCV2023/papers/Liang_MAAL_Multimodality-Aware_Autoencoder-Based_Affordance_Learning_for_3D_Articulated_Objects_ICCV_2023_paper.pdf
Affordance 即可供性,指环境属性使得个体的某种行为得以实施的可能性。在 3D 场景下,如果我们想要让机器人和环境中的物体做交互,让机器理解物体可供性是十分基础和必要的一个步骤。机器需要去理解物体在哪里可以施加作用力,并可以施加什么样的动作。例如,如果机器人需要操作桌面上的水瓶,它需要理解何处可以抓取和如何抓取,而后通过执行动作来移动水瓶。
进一步的,类似水瓶这样的简单物体并不要求机器有深刻的理解能力。它可以抓取瓶身、瓶颈等任意地方,都可以挪动瓶子。现实生活中,人类操作物体的需求要远比这复杂。我们会面临大量的,带有铰链的,有特殊结构的物体,比如柜子、水龙头、冰箱、洗衣机等等。这些物体存在相对复杂的内部构造,不仅仅是挪动整个物体,我们常常需要根据物体的内在结果来操作物体,比如打开柜门,按下按钮等等。这一系列带有铰链结构的,相对复杂的物体给机器人的理解和操作能力提出了更高的要求。
目前,一些