NeurIPS 2023 | 从分布鲁棒优化角度理解对比学习的鲁棒性和温度系数的意义

本文从分布式鲁棒优化(DRO)的角度深入分析了对比学习中的InfoNCE损失函数,揭示InfoNCE对负样本分布的鲁棒性,并指出温度系数实质上控制着鲁棒半径。作者还建立了DRO与互信息之间的理论联系,探讨了InfoNCE作为互信息估计的紧致性,并提出了新的损失函数ADNCE,以改进对比学习中的问题。
摘要由CSDN通过智能技术生成

a7268195544b2bf4f754dda85971e12f.gif

©PaperWeekly 原创 · 作者 | 吴俊康

单位 | 中国科学技术大学博士生

研究方向 | 对比学习

本文从分布式鲁棒优化(DRO)的角度分析了对比学习损失函数(InfoNCE),揭示了 InfoNCE 对负样本分布的鲁棒性,并指出温度系数的本质是 DRO 中控制鲁棒半径的拉格朗日系数,同时也建立了 DRO 和互信息 (MI) 之间的理论联系。此外,我们从 DRO 的角度指出了 InfoNCE 的潜在缺点,例如过度保守和对异常值的敏感。最后提出了一种新的损失函数——ADNCE,并验证了其在各个场景的有效性。

65bb759e3db5cce255b5f7c2d3c0e4fc.png

论文标题:

Understanding Contrastive Learning via Distributionally Robust Optimization

论文链接:

https://arxiv.org/pdf/2302.04775.pdf

代码链接:

https://github.com/junkangwu/ADNCE

作者主页:

https://junkangwu.github.io/

094de3f38285f20c2fa2709705e9769d.png

摘要

近年来,对比学习因其在自监督领域卓越的表现,受到越来越多的关注。核心思想是学习“拉近”证样本(例如来自同一图像的增强数据),同时“推开”负样本(例如来自不同图像的增强数据)的表示。通过利用这种直观的概念,无监督学习甚至开始挑战监督学习。然而,对比学习饱受困扰的一个问题就是——负采样偏差。由于无监督场景下的对比学习无法提前获得物品标签,负样本采样就成为了一个显著的问题。

为了解决这个问题,近年来有一些工作缓解这个问题,比如,[1, 2] 通过估计最优负样本的分布以缓解负采样中出现的偏差,[3] 则添加了一个检测模块用于识别并且修正存在的假负样本。

本工作则刷新了以往对比学习领域相关工作的认知,通过引入分布式鲁棒优化(DRO)这一理论工具,我们发现对比学习损失函数(InfoNCE)本质上是 KL 散度范围内,作用在负样本分布上的鲁棒优化目标(CL-DRO)。这一发现首先揭示了 InfoNCE 中的温度系数 并非是一种启发式设计,而是控制负样本鲁棒半径的一个拉格朗日系数。同时拥有 DRO 这一理论框架,我们还可以对其难负样本挖掘、方差控制等性质一一提供理论上的解释。

进一步,我们不局限于 KL 散度,分析了一般情况下(-divergence)下的 DRO 目标,有趣的是我们验证了任何 -divergence 下的 CL-DRO 和该 -divergence 对应的变分表示的等价性。这一发现严格上证明出“InfoNCE 是更紧的互信息的估计”。同时,这也为任意 -divergence 下的互信息估计提供了新的途径。

最后,DRO 的提出也揭示出 InfoNCE 存在的缺陷——过于保守,盲目地赋予难负样本最高的权重;以及忽略了 outlier 数据的影响。为改善这一现状,我们提出可调节的 InfoNCE(ADNCE)用于重塑 worst-case 分布,通过在多个领域的尝试(CV,NLP 和 Graph)验证了本方法的有效性。

369bf3f5993abac43e86c803a6cdb469.png

从DRO的视角理解对比学习

2.1 动机

在对比学习(CL)的实际应用中,负样本 (x,y) 通常是从训练数据中统一抽取的,它们可能具有相似的语义(例如标签)。正如 Chuang [1] 等人所提出的,这引入了负采样偏差的潜在问题。 

在本项研究中,我们观察到一个有趣的现象,即 InfoNCE 本身表现出对负采样偏差的抗噪性。我们在两个基准数据集 CIFAR10 和 STL10 上对 CL 进行了测试,如下表所示,我们发现:

1)通过微调温度 ,传统的 SimCLR 表现出显著的提升,达到了与专门设计用于解决负采样偏差的方法相当的性能水平(即 SimCLR () 与 SimCLR ()、DCL [1] 和 HCL [2]);

2&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值