©PaperWeekly 原创 · 作者 | 吕俊良
单位 | 中国人民大学统计学院
本文介绍了中国人民大学统计学院的一篇关于多任务贝叶斯联邦学习的文章“Task Diversity in Bayesian Federated Learning: Simultaneous Processing of Classification and Regression”,本文被 KDD 2025 接收,代码已经开源。
论文标题:
Task Diversity in Bayesian Federated Learning: Simultaneous Processing of Classification and Regression
论文链接:
https://doi.org/10.48550/arXiv.2412.10897
代码链接:
https://github.com/JunliangLv/task_diversity_BFL
背景
近些年来,边缘设备(edge devices)和物联网设备(Internet of Things devices)的激增引发了对分布式算法的强烈需求。联邦学习(federated learning,FL)使用分散在多个局部设备上的数据进行训练,避免大规模数据传输,从而增强局部隐私。
然而,现有的联邦学习工作集中于处理同质性任务,即只使用每台局部设备的数据进行分类任务训练,或只进行回归任务训练。这与现实情况中每台设备的数据可用于多种训练任务不符。
以健康监测设备为例,其收集的步频、心率、睡眠情况等传感器数据既可用于运动状态分析(分类任务),也可用于健康状况评估与预测(回归任务)。因