Multi-objective Optimization for Guaranteed Delivery in Video Service Platform
Hang Lei, Yin Zhao, Longjun Cai
Alibaba Group
https://dl.acm.org/doi/pdf/10.1145/3394486.3403352
视频服务平台中,保量是IP视频的重要展示策略之一。跟传统的推荐策略不同,保量要求投放系统保证所要投放的内容有一定的曝光量,这里的曝光量通常取决于购买协议或者平台的商业考虑。
这篇文章,作者们研究在保量的约束下,比如对视频曝光或者不同内容的公平竞争下,如何获得最大化收益。作者们将这种问题转化为带约束的非线性规划问题,目标是最大化总的视频曝光量以及内容之间曝光的公平性。
为了捕获视频曝光的趋势,以及每个视频内容的曝光数,作者们提出一种参数化常微分方程模型,该模型的参数利用视频历史pv和点击数据进行拟合。为解决有约束非线性规划问题,作者们利用遗传算法,同时考虑了常微分方程的约束,并且给出一种特定的编码方案设计。
基于真实数据的实验以及在优酷网的线上测试验证了作者们所提方法相对工业界STOA方法的有效性和优势。
这篇论文的主要贡献如下
作者们关于pv和点击得到的常微分方程形式如下