直播预告 | ICLR 2022论文解读:基于对比消歧的偏标签学习

a581c4214d72e8dbf90778f6e5439ee1.gif

40537d58455e0cfa0f2d9f2c22d9bf05.png

本期 AI Drive,我们邀请到浙江大学人工智能系博士生王皓波,为大家在线解读其发表在 ICLR 2022 的最新研究成果。本次报告的主题为「PiCO:基于对比消歧的偏标签学习」。对本期主题感兴趣的小伙伴,4 月 19 日(本周二)晚 7 点,我们准时相约 PaperWeekly 直播间。

77f92728ce0b2300b5eeeccb8571a8e2.png

直播信息

偏标签学习 (Partial Label Learning, PLL) 是一个经典的弱监督学习问题,它允许每个训练样本关联一个候选的标签集合,适用于许多具有标签不确定性和歧义的的现实世界数据标注场景。然而,现存的 PLL 算法与完全监督下的方法依然存在较大差距。为此,本文提出一个协同的框架解决 PLL 中的两个关键研究挑战——表征学习和标签消歧。

具体地,我们提出的 PiCO 由一个对比学习模块和一个新颖的基于类原型的标签消歧算法组成。PiCO 为来自同一类的样本生成紧密对齐的表示,同时促进标签消歧。从理论上讲,我们表明这两个组件能够互相促进,并且可以从期望最大化 (EM) 算法的角度得到严格证明。大量实验表明,PiCO 在 PLL 中显着优于当前最先进的 PLL 方法,甚至可以达到与完全监督学习相当的结果。

论文信息

文标题: 

Contrastive Label Disambiguation for Partial Label Learning

收录会议: 

ICLR 2022

论文链接: 

https://openreview.net/forum?id=EhYjZy6e1gJ

代码链接:

https://github.com/hbzju/pico

演讲提纲

  • 研究背景

  • 相关工作

  • PiCO 介绍

  • 实验结果

  • EM 视角下的 PiCO

  • 科研心得体会

dd7fc4a0b297a4fe4757fb6d9170058f.png

嘉宾介绍

d9cef5ea954630067fbae4e9477d94c7.png

 王皓波 / 浙江大学博士生 

王皓波,浙江大学人工智能系博士在读,研究领域包括弱监督学习、多标签学习、机器学习理论等方向,专注于开发鲁棒、实用、可解释机器学习算法。曾于 ICLR、TPAMI、AAAI、IJCAI 等顶级会议与期刊发表多篇论文,长期担任 ICLR、ICML、NeurIPS 等顶会审稿人。

fd4c97ab4ad274b46846afa751511cb2.png

直播地址

本次直播将在 PaperWeekly 视频号和 B 站直播间进行,扫描下方海报二维码或点击阅读原文即可免费观看。

 微信视频号 

点击下方 PaperWeekly 视频号预约按钮,第一时间获取开播提醒。

 B站直播间 

https://live.bilibili.com/14884511

aa255c65a90761bc90b980cfb20bee08.png

7a4680f8961e4a9cae0f1474ff1c0531.png

62ecfae64c694beaf08a48e27e385f9a.png

合作伙伴


bd85d40359d01744c206799cb6bf43e5.png

b3aa5693bfc840591019666e21e761b0.png

🔍

现在,在「知乎」也能找到我们了

进入知乎首页搜索「PaperWeekly」

点击「关注」订阅我们的专栏吧

·

d0def6d3f1c35947c8e8c8537975f0a3.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值