POJ 1287 并查集 Kruskal或者Prim
You are assigned to design network connections between certain points in a wide area. You are given a set of points in the area, and a set of possible routes for the cables that may connect pairs of points. For each possible route between two points, you are given the length of the cable that is needed to connect the points over that route. Note that there may exist many possible routes between two given points. It is assumed that the given possible routes connect (directly or indirectly) each two points in the area.
Your task is to design the network for the area, so that there is a connection (direct or indirect) between every two points (i.e., all the points are interconnected, but not necessarily by a direct cable), and that the total length of the used cable is minimal.
Input
The input file consists of a number of data sets. Each data set defines one required network. The first line of the set contains two integers: the first defines the number P of the given points, and the second the number R of given routes between the points. The following R lines define the given routes between the points, each giving three integer numbers: the first two numbers identify the points, and the third gives the length of the route. The numbers are separated with white spaces. A data set giving only one number P=0 denotes the end of the input. The data sets are separated with an empty line.
The maximal number of points is 50. The maximal length of a given route is 100. The number of possible routes is unlimited. The nodes are identified with integers between 1 and P (inclusive). The routes between two points i and j may be given as i j or as j i.
Output
For each data set, print one number on a separate line that gives the total length of the cable used for the entire designed network.
Sample Input
1 0

2 3
1 2 37
2 1 17
1 2 68

3 7
1 2 19
2 3 11
3 1 7
1 3 5
2 3 89
3 1 91
1 2 32

5 7
1 2 5
2 3 7
2 4 8
4 5 11
3 5 10
1 5 6
4 2 12

0
Sample Output
0
17
16
26

Kruskal方法:

#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
int f[30004];
struct node
{
    int a,b;
    long long  cost;
}num[6100];//这里要开很大才可以,题目也没说R多大,结果被WA了。。。。。。坑过
bool cmp(node a,node b)
{
    return a.cost<b.cost;
}
int gf(int c)
{
    if(f[c]==c)
        return c;
    else
    return f[c]=gf(f[c]);
}
int me(int a,int b)
{
    int t1=gf(a);
    int t2=gf(b);
    if(t1!=t2)
    {
        f[t2]=t1;
        return 1;
    }
    else
        return 0;
}
int main()
{
        int n,m;
        while(1)

        {
            cin>>n;
        if(n==0)
            break;
            cin>>m;
            memset(num,0,sizeof(num));
            memset(f,0,sizeof(f));
            for(int i=0;i<m;i++)
                cin>>num[i].a>>num[i].b>>num[i].cost;
        sort(num,num+m,cmp);
        int sum=0;
        for(int i=0;i<n;i++)
            f[i]=i;
            int c=0;
        for(int i=0;i<m;i++)
        {
            if(me(num[i].a,num[i].b)){
                    c++;
                sum+=num[i].cost;
            }
        if(c==n-1)
            break;
        }
            cout<<sum<<endl;
        }
        return 0;
}

prim:

    #include<iostream>
    #include<cstdio>
    #include<algorithm>
    #include<cstring>
    #include <string>
    using namespace std;
    int a[30001],e[300][300];
   int N=0x3f3f3f3f;
   int main()
   {
       int n,m;
       while(cin>>n,n){
            cin>>m;
       memset(e,N,sizeof(e));
       for(int i=1;i<=n;i++)
        e[i][i]=0;
       for(int i=1;i<=m;i++)
        {
            int x;
            int y;
          cin>>x>>y;
          int w;
          cin>>w;
          if(e[x][y]>w)
          {
              e[y][x]=w;
              e[x][y]=w;
          }

        }
        memset(a,0,sizeof(a));
        int dis[1000]={0};
        for(int i=1;i<=n;i++)
            dis[i]=e[1][i];
        a[1]=1;
        int sum=0;
        for(int i=1;i<=n-1;i++)
        {
            int mi=N;
            int u;
            for(int i=1;i<=n;i++)
                if(!a[i]&&dis[i]<mi)
                {
                    mi=dis[i];
                    u=i;
                }
               // cout<<sum<<endl;
                a[u]=1;
                sum+=dis[u];
                for(int k=1;k<=n;k++)
                    if(!a[k]&&dis[k]>e[u][k])
                    dis[k]=e[u][k];
        }
        cout<<sum<<endl;
       }
        return 0;
   }
prim在没使用堆优化时更适合稠密图
阅读更多
个人分类: 并查集
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

不良信息举报

POJ 1287 并查集 Kruskal或者Prim

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭