Data Augmentation techniques in time series domain: A survey and taxonomy

本文是对《Data Augmentation techniques in time series domain: A survey and taxonomy》的翻译。

摘要

随着深度学习生成模型的最新进展,利用它们在时间序列领域的出色表现并不需要很长时间。用于处理时间序列的深度神经网络在很大程度上依赖于用于训练的数据集的广度和一致性。这些类型的特征在现实世界中通常并不丰富,它们通常是有限的,并且通常具有必须保证的隐私约束。因此,一种有效的方法是使用数据增强(DA)技术,通过添加噪声或置换以及生成新的合成数据来增加数据的数量。它系统地回顾了该领域的最新技术,概述了所有可用的算法,并提出了最相关研究的分类。将评估不同变体的效率;作为过程的一个重要部分,将分析评估性能的不同指标以及与每个模型相关的主要问题。这项研究的最终目标是提供一个关于产生更好结果的领域的发展和表现的总结,以指导该领域的未来研究人员。

1. 引言

自深度学习(DL)出现以来,研究和工业界的一项重要工作就是解决和改进监督训练任务。监督学习需要具有各种特征的数据集,其中每个样本都必须标记。使用监督学习技术解决的最具代表性的问题是分类、回归和结构化模式输出问题。
传统上,用于监督任务的机器学习(ML)模型属于区分模型类别。区分建模与监督学习同义,或使用标记

元调优损失函数和数据增强是针对少样本目标检测的重要技术。在少样本目标检测任务中,由于样本数量有限,模型往往很难对新类别的目标进行准确的检测。为了解决这一问题,研究者提出了使用元调优的方法来调整损失函数和增强数据。 首先,元调优损失函数是指通过优化损失函数的参数,使得模型在少样本情况下能够更好地泛化到新类别的目标。通常采用的方法是设计一个元损失函数,这个函数能够根据当前任务的特性来自动调整模型的损失函数。通过元损失函数的调整,模型可以更好地适应少样本目标检测任务,提高检测的准确性和泛化能力。 其次,数据增强是指在训练过程中对样本进行一些变换,来生成更多的训练样本。对于少样本目标检测任务,数据增强能够帮助模型学习到更多不同类别目标的特征,提高模型的泛化能力。通过元调优的方法,可以设计一些特定的数据增强策略,使得模型在少样本情况下能够更好地学习到不同类别目标的特征,从而提高检测的准确性和泛化能力。 总之,元调优损失函数和数据增强是针对少样本目标检测问题的重要技术,能够帮助模型更好地适应少样本情况,提高检测的准确性和泛化能力。通过这些技术的应用,可以使得少样本目标检测模型在实际应用中取得更好的效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值