该文是对《Vision-based Vehicle Speed Estimation: A Survey》的翻译,为了个人记录学习。
摘要
出于至少两个主要原因,准确估计道路车辆速度的需求变得越来越重要。首先,近年来,全球安装的测速摄像头数量不断增加,因为引入和实施适当的限速被认为是提高道路安全的最有效手段之一。第二,道路网络中的交通监控和预测对于提高智能城市的交通、排放和能源消耗具有重要作用,因为车辆的速度是交通状态的最相关参数之一。在可用于精确检测车辆速度的技术中,基于视觉的系统的使用带来了需要解决的巨大挑战,但也带来了巨大的潜在优势,例如由于缺少昂贵的距离传感器而大幅降低了成本,以及准确识别车辆的可能性。本文综述了基于视觉的车辆速度估计。我们描述了术语、应用领域,并提出了一个完整的分类法,对大量工作进行了分类,对涉及的所有阶段进行了分类。提供了性能评估指标和可用数据集的概述。最后,我们讨论了当前的局限性和未来的方向。
1 引言
提供准确估计道路车辆速度的能力是智能交通系统(ITS)的一个关键特征。这需要解决诸如同步数据记录、表示、检测和跟踪、距离和速度估计等问题,并且可以使用来自不同性质的传感器(例如,雷达、激光或相机)的数据以及在不同的照明和天气条件下解决这些问题。
这是该领域的一个众所周知