Vision-based Vehicle Speed Estimation: A Survey

该文是对《Vision-based Vehicle Speed Estimation: A Survey》的翻译,为了个人记录学习。

摘要

出于至少两个主要原因,准确估计道路车辆速度的需求变得越来越重要。首先,近年来,全球安装的测速摄像头数量不断增加,因为引入和实施适当的限速被认为是提高道路安全的最有效手段之一。第二,道路网络中的交通监控和预测对于提高智能城市的交通、排放和能源消耗具有重要作用,因为车辆的速度是交通状态的最相关参数之一。在可用于精确检测车辆速度的技术中,基于视觉的系统的使用带来了需要解决的巨大挑战,但也带来了巨大的潜在优势,例如由于缺少昂贵的距离传感器而大幅降低了成本,以及准确识别车辆的可能性。本文综述了基于视觉的车辆速度估计。我们描述了术语、应用领域,并提出了一个完整的分类法,对大量工作进行了分类,对涉及的所有阶段进行了分类。提供了性能评估指标和可用数据集的概述。最后,我们讨论了当前的局限性和未来的方向。

1 引言

提供准确估计道路车辆速度的能力是智能交通系统(ITS)的一个关键特征。这需要解决诸如同步数据记录、表示、检测和跟踪、距离和速度估计等问题,并且可以使用来自不同性质的传感器(例如,雷达、激光或相机)的数据以及在不同的照明和天气条件下解决这些问题。
这是该领域的一个众所周知

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值