在Ubuntu系统安装GPU版本的TensorFlow,主要就是要选择好合适的TensorFlow版本以及与之相对应的cuda以及cudnn版本。
第一步,确保系统安装了anaconda,这个安装过程较为简单,
第二步,利用anaconda创建Python环境
(1)基于Python创建一个pytf的环境
cond create -n pytf python=3.6
第三步,安装TensorFlow-gpu版本
pip install tensorflow-gpu==2.7 -i https://pypi.tuna.tsinghua.edu.cn/simple
第四步,安装cuda
conda install cudatoolkit=11.3 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/linux-64/
第五步,安装cudnn
conda install cudnn=8.2
第六步,测试环境是否安装成功
import tensorflow as tf
# 检查tensorflow是否得到CUDA支持,安装成功则显示true,否则为false
tf.test.is_built_with_cuda()
# 检查tensorflow是否可以获取到GPU,安装成功则显示true,否则为false
tf.test.is_gpu_available()
这里要注意的就是安装TensorFlow时,选择合适对应的cuda以及cudnn版本,下面给出算是一个合适的对应表。
TensorFlow | Cuda | cudnn |
---|---|---|
1.0.0-1.2.0 | 8 | 5.1 |
1.3.0-1.4.0 | 8 | 6 |
1.5.0-1.12.0 | 9.0 | 7 |
1.13.0 | 10.0 | 7.4 |
2.0 | 10.0 | 7.6 |
2.1 | 10.1 | 7.6 |
2.2 | 10.1 | 7.6 |
2.3 | 10.1 | 7.6 |
2.4 | 11.0 | 8.0 |
2.5 | 11.2 | 8.1 |
2.6 | 11.3 | 8.2 |
2.7 | 11.3 | 8.2 |
2.8 | 11.6 | 8.6 |
2.9 | 11.6 | 8.6 |
2.10 | 11.6 | 8.6 |
这里有个小插曲,安装TF1.10.0的时候,要严格安装9.0版本的cuda,要是不小心装成其他型号,会失败。
同理,在安装paddle时,也需要注意相应的cuda以及cudnn版本。他们之间的版本号对应关系:
paddlepaddle-gpuX.X.X.postXX 其中post后的两个XX分别代表CUDA版本,CUDNN版本。
以paddlepaddle-gpu1.5.1.post87为例,代表CUDA版本8,CUDNN版本7.X