DTS-SQL: Decomposed Text-to-SQL with Small Large Language Models

828 篇文章

已下架不支持订阅

本文提出了一种两阶段微调方法,将Text-to-SQL任务分解,有效缩小开源小模型与专有大模型在性能上的差距,平均提升执行精度3%至7%。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《DTS-SQL: Decomposed Text-to-SQL with Small Large Language Models》的翻译。

DTS-SQL:使用小型-大语言模型分解Text-to-SQL

摘要

Text-to-SQL任务的主要模型严重依赖于专有的大型语言模型(LLM),这引发了对数据隐私的担忧。缩小小型开源模型和大型专有模型之间的性能差距对于缓解这种依赖至关重要。为此,我们引入了一种新的两阶段微调方法,将任务分解为两个更简单的任务。通过对两个大型跨域数据集和两个小型LLM的综合评估,我们发现这种方法将执行精度提高了3%至7%,有效地将开源模型的性能与其

已下架不支持订阅

### DIN-SQL 和 C3-SQL 的主要差异及各自特点 #### 主要差异 DIN-SQL 和 C3-SQL 都致力于解决 Text-to-SQL 任务并利用了大型语言模型的能力,但两者之间存在一些关键的不同之处。 - **侧重点不同** DIN-SQL 更加注重任务分解和自我纠正机制的应用。这种设计使得该方法能够逐步处理复杂问题,并通过多次迭代改进生成的结果[^1]。 相较之下,C3-SQL 则强调零样本学习能力以及提示词的设计质量对于最终效果的影响。此框架下的系统能够在无需额外训练的情况下适应新环境或领域内的查询需求[^5]。 - **实现方式** 对于 DIN-SQL 而言,其采用的是基于多轮对话的形式来进行 SQL 查询构建;而 C3-SQL 是依靠强大的预训练大模型本身所具备的知识完成从自然语言描述向结构化查询语句转换的过程[^2]。 #### 各自特点 ##### DIN-SQL 特点 - 提出了任务分解的方法论,有助于更好地理解输入文本中的逻辑关系; - 自我纠正功能允许算法在发现错误时自动调整输出结果直至满意为止; - 可能更适合那些具有明确阶段性和层次感的任务场景应用。 ##### C3-SQL 特点 - 凭借先进的预训练架构实现了真正的零样本泛化能力,在面对未知数据源时表现尤为突出; - 清晰有效的提示可以帮助引导模型生成更加精准合理的答案选项; - 使用 self-consistency 技术确保即使是在高度不确定性的条件下也能保持较高的准确性与稳定性。 ```python def generate_sql_query_din(input_text): # 基于DIN-SQLSQL查询生成功能模拟 decomposed_tasks = task_decomposition(input_text) sql_query_drafts = [] for task in decomposed_tasks: draft = initial_sql_generation(task) corrected_draft = self_correction(draft, input_text) sql_query_drafts.append(corrected_draft) final_sql_query = combine_and_refine(sql_query_drafts) return final_sql_query def generate_sql_query_c3(input_text): # 基于C3-SQLSQL查询生成功能模拟 multiple_inferences = multi_path_inference(input_text) valid_queries = filter_execution_errors(multiple_inferences) best_query = vote_for_best(valid_queries) return best_query ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值