Verified Multi-Step Synthesis using Large Language Models and Monte Carlo Tree Search

828 篇文章

已下架不支持订阅

文章介绍了一种名为VMCTS的方法,结合大型语言模型(LLM)和蒙特卡洛树搜索(MCTS),在Dafny、Lean和Coq中生成验证过的程序。VMCTS通过验证器在每一步检查部分程序,增强LLM的综合能力。实验表明,VMCTS在解决已验证的编程问题上表现出色,甚至与增强版ChatGPT4竞争。未来的研究方向包括减少搜索的盲目性,通过更紧密地耦合LLM和验证器。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《Verified Multi-Step Synthesis using Large Language Models and Monte Carlo Tree Search》的翻译。

使用大型语言模型和蒙特卡罗树搜索验证多步合成

摘要

我们提出了一种使用蒙特卡罗树搜索(MCTS)来指导大型语言模型(LLM)在Dafny、Lean和Coq中生成经过验证的程序的方法。我们称之为VMCTS的方法通过在每一步检查部分程序来利用搜索算法中的验证器。与LLM先验相结合,验证器反馈提高了开源模型的综合能力。在一组五个已验证的编程问题上,我们发现在四个问题中,即使重新采样一个小时的解决方案,基本模型也无法解决问题,VMCTS可以在6分钟内解决问题。VMCTS的基本模型甚至与添加了插件和多次重试的ChatGPT4相比具有竞争力。我们的代码和基准测试在https://github.com/namin/llm-verified-with-monte-carlo-tree-search可用.

1 引言

2 相关工作

3 方法:VMCTS

4 变体

已下架不支持订阅

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值