本文是LLM系列文章,针对《Verified Multi-Step Synthesis using Large Language Models and Monte Carlo Tree Search》的翻译。
摘要
我们提出了一种使用蒙特卡罗树搜索(MCTS)来指导大型语言模型(LLM)在Dafny、Lean和Coq中生成经过验证的程序的方法。我们称之为VMCTS的方法通过在每一步检查部分程序来利用搜索算法中的验证器。与LLM先验相结合,验证器反馈提高了开源模型的综合能力。在一组五个已验证的编程问题上,我们发现在四个问题中,即使重新采样一个小时的解决方案,基本模型也无法解决问题,VMCTS可以在6分钟内解决问题。VMCTS的基本模型甚至与添加了插件和多次重试的ChatGPT4相比具有竞争力。我们的代码和基准测试在https://github.com/namin/llm-verified-with-monte-carlo-tree-search可用.