本文是LLM系列文章,针对《Revisiting subword tokenization: A case study on affixal negation in large language models》的翻译。
摘要
在这项工作中,我们衡量了词缀否定对现代英语大语言模型(LLMs)的影响。在词缀否定中,被否定的意义是通过否定语素来表达的,这对LLM来说可能是一个挑战,因为它们的标记者在形态上往往不合理。我们使用具有不同子词标记化方法的LLM进行了广泛的实验,从而对标记化性能和否定敏感性之间的相互作用有了一些见解。尽管标记化准确性和否定检测性能之间存在一些有趣的不匹配,但我们表明,总体而言,模型可以可靠地识别词缀否定的含义。
1 引言
2 相关工作
3 实验设置
4 发现
5 token归属研究
6 结论
7 局限性
在这项工作中,我们对现代LLM如何处理词缀否定进行了深入分析,词缀否定是一种否定类型,其中形态对于理解单词语义至关重要。我们已经证明,在