Revisiting subword tokenization: A case study on affixal negation in large language models

本文是LLM系列文章,针对《Revisiting subword tokenization: A case study on affixal negation in large language models》的翻译。

重访子词标记化:大型语言模型中词缀否定的案例研究

摘要

在这项工作中,我们衡量了词缀否定对现代英语大语言模型(LLMs)的影响。在词缀否定中,被否定的意义是通过否定语素来表达的,这对LLM来说可能是一个挑战,因为它们的标记者在形态上往往不合理。我们使用具有不同子词标记化方法的LLM进行了广泛的实验,从而对标记化性能和否定敏感性之间的相互作用有了一些见解。尽管标记化准确性和否定检测性能之间存在一些有趣的不匹配,但我们表明,总体而言,模型可以可靠地识别词缀否定的含义。

1 引言

2 相关工作

3 实验设置

4 发现

5 token归属研究

6 结论

7 局限性

在这项工作中,我们对现代LLM如何处理词缀否定进行了深入分析,词缀否定是一种否定类型,其中形态对于理解单词语义至关重要。我们已经证明,在

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值