曲面的存在性问题
有这样一类问题:
给定曲面的第一、第二基本形式,问是否存在相应的曲面。
这是曲面的存在性问题。
曲面的存在性定理
关于这个问题最好的结论被称为曲面的存在性定理:两个满足Gauss-Codazzi方程的二次微分形式在局部定义一张正则参数曲面。
因而问题归结为验证Gauss-Codazzi方程。
例题
问是否有曲面,分别以 φ \varphi φ和 ψ \psi ψ为第一、第二基本形式?
(1) φ = \varphi = φ=d u u ud u + u+ u+d v v vd v v v, ψ = \psi = ψ=d u u ud u − u- u−d v v vd v v v
本题的情况都是选择正交曲率线网为参数曲线网的情况
这时的Gauss方程:
L
N
=
−
E
G
(
(
(
E
)
v
G
)
v
+
(
(
G
)
u
E
)
u
)
LN=-\sqrt{EG}((\frac{(\sqrt{E})_v}{\sqrt{G}})_v+(\frac{(\sqrt{G})_u}{\sqrt{E}})_u)
LN=−EG((G(E)v)v+(E(G)u)u)
和Codazzi方程:
L v = H E v , N u = H G u . L_{v}=HE_{v},\\N_{u}=HG_{u}. Lv=HEv,Nu=HGu.
都有简单漂亮的形式。
其中 H = L G + N E 2 E G = 1 2 ( L E + N G ) H=\frac{LG+NE}{2EG}=\frac{1}{2}(\frac{L}{E}+\frac{N}{G}) H=2EGLG+NE=21(EL+GN)是平均曲率。
验证Gauss方程:
− 1 = 0 -1=0 −1=0
矛盾!故不存在符合要求的曲面。
(2) φ = \varphi = φ=d u u ud u + cos 2 u u+\cos^2u u+cos2ud v v vd v v v, ψ = cos 2 u \psi = \cos ^2u ψ=cos2ud u u ud u + u+ u+d v v vd v v v
验证Gauss方程:
cos 2 u = − G ( G ) u u = cos 2 u \cos^2u=-\sqrt{G}(\sqrt{G})_{uu}=\cos^2u cos2u=−G(G)uu=cos2u
计算平均曲率:
H = 1 2 ( cos 2 u + 1 cos 2 u ) H=\frac12(\cos^2u+\frac1{\cos^2u}) H=21(cos2u+cos2u1)
验证Codazzi方程:
{ L v = H E v N u = H G u ⇒ { 0 = 0 0 = − sin u cos u ( cos 2 u + 1 cos 2 u ) \left.\left\{\begin{matrix}L_{\boldsymbol{v}}=HE_{\boldsymbol{v}}\\N_{\boldsymbol{u}}=HG_{\boldsymbol{u}}\end{matrix}\right.\right.\Rightarrow\left\{\begin{matrix}0=0\\0=-\sin u\cos u(\cos^2u+\frac1{\cos^2u})\end{matrix}\right. {Lv=HEvNu=HGu⇒{0=00=−sinucosu(cos2u+cos2u1)
矛盾!故不存在符合要求的曲面。