曲面的存在性定理

曲面的存在性问题

有这样一类问题:
给定曲面的第一、第二基本形式,问是否存在相应的曲面。

这是曲面的存在性问题。



曲面的存在性定理

关于这个问题最好的结论被称为曲面的存在性定理:两个满足Gauss-Codazzi方程的二次微分形式在局部定义一张正则参数曲面。

因而问题归结为验证Gauss-Codazzi方程。



例题

问是否有曲面,分别以 φ \varphi φ ψ \psi ψ为第一、第二基本形式?

(1) φ = \varphi = φ=d u u ud u + u+ u+d v v vd v v v, ψ = \psi = ψ=d u u ud u − u- ud v v vd v v v

本题的情况都是选择正交曲率线网为参数曲线网的情况

这时的Gauss方程:
L N = − E G ( ( ( E ) v G ) v + ( ( G ) u E ) u ) LN=-\sqrt{EG}((\frac{(\sqrt{E})_v}{\sqrt{G}})_v+(\frac{(\sqrt{G})_u}{\sqrt{E}})_u) LN=EG ((G (E )v)v+(E (G )u)u)

和Codazzi方程:

L v = H E v , N u = H G u . L_{v}=HE_{v},\\N_{u}=HG_{u}. Lv=HEv,Nu=HGu.

都有简单漂亮的形式。

其中 H = L G + N E 2 E G = 1 2 ( L E + N G ) H=\frac{LG+NE}{2EG}=\frac{1}{2}(\frac{L}{E}+\frac{N}{G}) H=2EGLG+NE=21(EL+GN)是平均曲率。

验证Gauss方程:

− 1 = 0 -1=0 1=0

矛盾!故不存在符合要求的曲面。

(2) φ = \varphi = φ=d u u ud u + cos ⁡ 2 u u+\cos^2u u+cos2ud v v vd v v v, ψ = cos ⁡ 2 u \psi = \cos ^2u ψ=cos2ud u u ud u + u+ u+d v v vd v v v

验证Gauss方程:

cos ⁡ 2 u = − G ( G ) u u = cos ⁡ 2 u \cos^2u=-\sqrt{G}(\sqrt{G})_{uu}=\cos^2u cos2u=G (G )uu=cos2u

计算平均曲率:

H = 1 2 ( cos ⁡ 2 u + 1 cos ⁡ 2 u ) H=\frac12(\cos^2u+\frac1{\cos^2u}) H=21(cos2u+cos2u1)

验证Codazzi方程:

{ L v = H E v N u = H G u ⇒ { 0 = 0 0 = − sin ⁡ u cos ⁡ u ( cos ⁡ 2 u + 1 cos ⁡ 2 u ) \left.\left\{\begin{matrix}L_{\boldsymbol{v}}=HE_{\boldsymbol{v}}\\N_{\boldsymbol{u}}=HG_{\boldsymbol{u}}\end{matrix}\right.\right.\Rightarrow\left\{\begin{matrix}0=0\\0=-\sin u\cos u(\cos^2u+\frac1{\cos^2u})\end{matrix}\right. {Lv=HEvNu=HGu{0=00=sinucosu(cos2u+cos2u1)

矛盾!故不存在符合要求的曲面。



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

F_D_Z

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值