A New Era in Computational Pathology: A Survey on Foundation and Vision-Language Models

本文是LLM系列文章,针对《A New Era in Computational Pathology: A Survey on Foundation and Vision-Language Models》的翻译。

计算病理学的新时代:基础和视觉语言模型的调查

摘要

深度学习的最新进展彻底改变了计算病理学 (CPath) 领域,通过将基础模型 (FM) 和视觉语言模型 (VLM) 集成到病理学家的评估和决策过程中,反过来又改变了病理学家的诊断工作流程。 FM 通过学习表示空间来克服 CPath 中现有深度学习方法的局限性,该表示空间可以在没有明确监督的情况下适应各种下游任务。 VLM 允许将用自然语言编写的病理报告用作丰富的语义信息源,以改进现有模型并以自然语言形式生成预测。在本次调查中,对 CPath 中 FM 和 VLM 的最新创新进行了全面、系统的概述。此外,除了将这些模型分类为不同的组之外,还总结了这些模型的工具、数据集和训练方案。这项广泛的调查强调了 CPath 当前的趋势以及未来通过 FM 和 VLM 进行改造的方式。

1 引言

2 病理学多模态数据集

3 基础模型

4 视觉语言模型

5 结论

近年来,使用 FM 和 VLM 进行 CPath 的研究工作数量显着增加,这表明 CPa

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值