本文是LLM系列文章,针对《A New Era in Computational Pathology: A Survey on Foundation and Vision-Language Models》的翻译。
摘要
深度学习的最新进展彻底改变了计算病理学 (CPath) 领域,通过将基础模型 (FM) 和视觉语言模型 (VLM) 集成到病理学家的评估和决策过程中,反过来又改变了病理学家的诊断工作流程。 FM 通过学习表示空间来克服 CPath 中现有深度学习方法的局限性,该表示空间可以在没有明确监督的情况下适应各种下游任务。 VLM 允许将用自然语言编写的病理报告用作丰富的语义信息源,以改进现有模型并以自然语言形式生成预测。在本次调查中,对 CPath 中 FM 和 VLM 的最新创新进行了全面、系统的概述。此外,除了将这些模型分类为不同的组之外,还总结了这些模型的工具、数据集和训练方案。这项广泛的调查强调了 CPath 当前的趋势以及未来通过 FM 和 VLM 进行改造的方式。
1 引言
2 病理学多模态数据集
3 基础模型
4 视觉语言模型
5 结论
近年来,使用 FM 和 VLM 进行 CPath 的研究工作数量显着增加,这表明 CPa