A Federated Large Language Model for Long-Term Time Series Forecasting

本文是LLM系列文章,针对《A Federated Large Language Model for Long-Term Time Series Forecasting》的翻译。

用于长期时间序列预测的联合大语言模型

摘要

集中式环境中的长期时间序列预测在数据隐私、通信开销和可扩展性方面提出了独特的挑战。为了应对这些挑战,我们提出了 FedTime,这是一种专为长期时间序列预测而定制的联合大语言模型 (LLM)。具体来说,我们引入了具有微调和对齐策略的联合预训练LLM。在学习过程之前,我们采用 K 均值聚类将边缘设备或客户端划分为不同的集群,从而促进更有针对性的模型训练。我们还结合了通道独立性和修补功能,以更好地保留本地语义信息,确保保留重要的上下文细节,同时最大限度地降低信息丢失的风险。我们通过对各种现实世界预测基准的广泛实验证明了 FedTime 模型的有效性,展示了相对于最新方法的实质性改进。此外,我们还展示了 FedTime 在简化资源使用方面的效率,从而减少了通信开销。

1 引言

2 相关工作

3 方法

4 实验

5 结论

我们引入了 FedTime,这是一种用于长期时间序列预测的联合大型语言模型。 FedTime 利用联合学习&#

联邦学习是一种通过多方计算(MPC)进行信用评分的方法。信用评分是评估个人信用风险的重要工具,但在传统模型中,所有的个人数据都必须集中在一起进行建模和分析,这会引发隐私和数据安全的担忧。 联邦学习通过在保持数据分散的同时进行模型训练,解决了这些问题。在这一方法中,各方参与者共享他们的本地模型,而不是直接共享他们的数据。每个参与者都单独训练模型,并将更新的模型参数发送给中央服务器。服务器对接收到的参数进行聚合,生成一个全局模型,然后将更新的模型参数再次分发给各参与者。这个过程迭代进行,直到全局模型收敛并达到所需的性能。 联邦学习具有以下优点:首先,隐私得到了保护,因为个人数据不必共享;其次,数据安全风险降低,因为数据不必发送到中央服务器;再次,由于数据分布保持不变,模型的准确性和鲁棒性可以得到保证。 在信用评分方面,用联邦学习进行多方计算,可以使多个金融机构之间能够合作进行信用评分,而不必共享客户的个人数据。这种方法可以提高信用评分的效果,同时保护客户的隐私和数据安全。 总而言之,联邦学习通过多方计算解决了信用评分中的隐私和数据安全问题。这种方法可以促进金融机构之间的合作,并提高信用评分的准确性和效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值