A Neural Matrix Decomposition Recommender System Model based on the Multimodal Large Language Model

本文是LLM系列文章,针对《A Neural Matrix Decomposition Recommender System Model based on the Multimodal Large Language Model》的翻译。

一种基于多模态大语言模型的神经矩阵分解推荐系统模型

摘要

推荐系统已成为信息搜索问题的重要解决方案。本文提出了一种基于多模态大语言模型的神经矩阵分解推荐系统模型,称为BoNMF。该模型结合了BoBERTa在自然语言处理方面的强大能力、视觉计算机中的ViT和神经矩阵分解技术。通过捕捉用户和项目的潜在特征,并在与由用户和项目ID组成的低维矩阵交互后,神经网络输出结果。推荐。冷启动和消融实验结果表明,BoNMF模型在大型公共数据集上表现出色,显著提高了推荐的准确性。

1 引言

2 相关工作

3 方法

4 实验

5 分析

6 讨论

7 结论

在本研究中,我们介绍了 BoNMF 模型,这是一个基于大规模预训练模型 BoBERTa 和 ViT 的神经矩阵分解推荐系统。通过将来自 BoBERTa 的高维文本特征向量和 ViT 分解的高维图像特征向量与用户和项目 ID 的低维嵌入相结合࿰

As an AI language model, I am not able to write and save code files. However, I can explain the general steps and process of creating a style transfer program based on convolution neural network with Python. Style transfer is a technique that enables the transfer of style and texture of one image to another image, while preserving the content of the original image. This technique is based on convolution neural network models. The general steps to create a style transfer program are as follows: 1. Load and preprocess the content and style images. 2. Define the convolution neural network model architecture for the style transfer. 3. Define the loss functions to optimize the style transfer. 4. Train the model using the defined loss functions and optimizer. 5. Save the trained model weights in a separate file for future use. Here is a sample code for creating a style transfer program based on convolution neural network with Python: ``` # Import necessary libraries import tensorflow as tf import numpy as np import matplotlib.pyplot as plt # Load and preprocess the content and style images content_image = preprocess_image(content_path) style_image = preprocess_image(style_path) # Define the convolution neural network model architecture for the style transfer def style_transfer_model(content_image, style_image): # Define the input layers for content and style images content_input = tf.keras.layers.Input(shape=content_image.shape, name='content_image') style_input = tf.keras.layers.Input(shape=style_image.shape, name='style_image') # Build the convolution neural network model architecture # Add convolutional and pooling layers to extract features from content and style images # Add upsampling and convolutional layers to apply the learned style to the content image # Define the output layer as the stylized image output_image = ... # Define the model object model = tf.keras.models.Model(inputs=[content_input, style_input], outputs=output_image) return model # Define the loss functions to optimize the style transfer # Use mean squared error for content loss and Gram matrix for style loss def content_loss(content_features, generated_features): mse_loss = tf.reduce_mean(tf.square(content_features - generated_features)) return mse_loss def gram_matrix(input_tensor): channels = int(input_tensor.shape[-1]) a = tf.reshape(input_tensor, [-1, channels]) n = tf.shape(a)[0] gram = tf.matmul(a, a, transpose_a=True) return gram / tf.cast(n, tf.float32) def style_loss(style_features, generated_features): style_gram = gram_matrix(style_features) generated_gram = gram_matrix(generated_features) mse_loss = tf.reduce_mean(tf.square(style_gram - generated_gram)) return mse_loss # Train the model using the defined loss functions and optimizer model = style_transfer_model(content_image, style_image) content_features = ... style_features = ... generated_features = model([content_image, style_image]) content_loss_val = content_loss(content_features, generated_features) style_loss_val = style_loss(style_features, generated_features) total_loss = content_loss_val + style_loss_val optimizer = tf.keras.optimizers.Adam(learning_rate=0.001) model.compile(optimizer, loss=total_loss) model.fit(x=[content_image, style_image], y=target_image, epochs=10) # Save the trained model weights in a separate file for future use model.save_weights('style_transfer_weights.h5') ``` In this code, we first load and preprocess the content and style images. We then define the convolution neural network model architecture for style transfer and the loss functions for optimizing the style transfer. We train the model using the defined loss functions and optimizer, and finally save the trained model weights in a separate file for future use.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值