本文是LLM系列文章,针对《A Neural Matrix Decomposition Recommender System Model based on the Multimodal Large Language Model》的翻译。
摘要
推荐系统已成为信息搜索问题的重要解决方案。本文提出了一种基于多模态大语言模型的神经矩阵分解推荐系统模型,称为BoNMF。该模型结合了BoBERTa在自然语言处理方面的强大能力、视觉计算机中的ViT和神经矩阵分解技术。通过捕捉用户和项目的潜在特征,并在与由用户和项目ID组成的低维矩阵交互后,神经网络输出结果。推荐。冷启动和消融实验结果表明,BoNMF模型在大型公共数据集上表现出色,显著提高了推荐的准确性。
1 引言
2 相关工作
3 方法
4 实验
5 分析
6 讨论
7 结论
在本研究中,我们介绍了 BoNMF 模型,这是一个基于大规模预训练模型 BoBERTa 和 ViT 的神经矩阵分解推荐系统。通过将来自 BoBERTa 的高维文本特征向量和 ViT 分解的高维图像特征向量与用户和项目 ID 的低维嵌入相结合