DistZO2: High-Throughput and Memory-Efficient ZerothOrder Fine-tuning LLMs with Distributed Parallel

在这里插入图片描述

文章主要内容和创新点

主要内容

本文提出了DistZO2,一个高吞吐量、内存高效的分布式零阶(zeroth-order, ZO)微调框架,用于大规模语言模型(LLMs)的微调。零阶优化通过仅使用前向计算估计梯度(无需反向传播),大幅降低内存消耗,但现有ZO2框架受限于单设备执行,吞吐量较低。DistZO2在ZO2的内存高效设计基础上,引入分布式并行策略和通信优化,实现了多GPU系统上的高效零阶微调,在OPT-175B模型上实现了相较于ZO2的3倍加速,同时保持低内存占用(单GPU内存可低于20GB)。

创新点
  1. 三种并行策略

    • 扰动并行(Perturbation Parallelism, PertP):将零阶优化所需的两个扰动前向传播(+ϵz和-ϵz)分配到不同设备并行执行,利用两者的独立性提升吞吐量。
    • 分布式数据并行(Distributed Data Parallelism, DDP):适配零阶训练的标量梯度特性,通过同步标量投影梯度而非完整张量,实现高效模型复制和数据并行。
    • 2D并行:融合PertP和DDP,形成“扰动方向-数据批次”的二维并行框架,支持更多GPU的高效扩展。
  2. 硬件感知

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值