你对这篇学术论文的核心内容与创新点的提炼需求很关键,这能快速把握研究价值。文章核心是首次系统验证扩散大型语言模型(DLLMs)在软件工程全生命周期的优势,其在准确性和效率上均超越传统自回归模型(AR-LLMs)。
一、文章主要内容总结
- 研究背景:传统AR-LLMs在软件工程(SE)任务中存在局限,无法有效处理代码结构信息,且推理延迟高;而DLLMs具备全局双向编码和生成步骤解耦的特性,为SE任务提供新方向。
- 研究范围:将DLLMs应用于软件工程全生命周期,涵盖代码生成、缺陷检测、程序修复、跨文件维护四大核心任务。
- 实验设计:基于6个公开基准数据集(Defects4J、Devign、SWE-bench等),共52937个任务展开实验,对比7B参数规模的DLLM(Mercury-Diffusion 7B)与AR-LLM(AR-Llama3-8B)的性能。
- 核心结果
- 准确性:DLLMs平均准确率提升30%,其中跨文件修复任务(SWE-bench)准确率提升113%,代码生成(HumanEval Pass@1)、程序修复(Defects4J)等任务均有显著优势。
- 效率:DLLMs生成速度(TPS)是AR-LLMs的3.5-22倍,平均任务耗时缩短3-3.6倍,且输出长度增加时仍能保持稳定效率。
- 未来计划:

订阅专栏 解锁全文
3万+

被折叠的 条评论
为什么被折叠?



