Exploring the Power of Diffusion Large Language Models for Software Engineering

你对这篇学术论文的核心内容与创新点的提炼需求很关键,这能快速把握研究价值。文章核心是首次系统验证扩散大型语言模型(DLLMs)在软件工程全生命周期的优势,其在准确性和效率上均超越传统自回归模型(AR-LLMs)。

一、文章主要内容总结

  1. 研究背景:传统AR-LLMs在软件工程(SE)任务中存在局限,无法有效处理代码结构信息,且推理延迟高;而DLLMs具备全局双向编码和生成步骤解耦的特性,为SE任务提供新方向。
  2. 研究范围:将DLLMs应用于软件工程全生命周期,涵盖代码生成、缺陷检测、程序修复、跨文件维护四大核心任务。
  3. 实验设计:基于6个公开基准数据集(Defects4J、Devign、SWE-bench等),共52937个任务展开实验,对比7B参数规模的DLLM(Mercury-Diffusion 7B)与AR-LLM(AR-Llama3-8B)的性能。
  4. 核心结果
    • 准确性:DLLMs平均准确率提升30%,其中跨文件修复任务(SWE-bench)准确率提升113%,代码生成(HumanEval Pass@1)、程序修复(Defects4J)等任务均有显著优势。
    • 效率:DLLMs生成速度(TPS)是AR-LLMs的3.5-22倍,平均任务耗时缩短3-3.6倍,且输出长度增加时仍能保持稳定效率。
  5. 未来计划
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值