Describe
Given a set of distinct integers, nums, return all possible subsets.
Note: The solution set must not contain duplicate subsets. For
example, If nums = [1,2,3], a solution is:
[ [3], [1], [2], [1,2,3], [1,3], [2,3], [1,2], [] ]
大意:
给出一个int整型集合,求其所有子集。
思路:
对于一个集合A,其中的任意一个元素一定属于或不属于其子集,由每一个元素“属于”或“不属于”组合的所有情形即是A的所有子集。
对于子集中的元素考虑以下事实:
- 每个元素都不相同。
- 每个元素只有 属于 或 不属于 两种状态
因此考虑使用位运算来解决
对应地,在位运算中:
- 每一位含义不同
- 每位只有1或0两种状态
因此可以使用同样长度的二进制位表示所有子集的情况。
实现:
int count(int x){
// 计算x的二进制位中有多少个1
int rst;
for(rst = 0;x;x=x&(x-1))rst++;
return rst;
}
int** subsets(int* nums, int numsSize, int** columnSizes, int* returnSize) {
*returnSize = 1<<numsSize;
*columnSizes = (int*)malloc(*returnSize*sizeof(int));
int**rst = (int**)malloc(*returnSize*sizeof(int*));
int n = 1<<numsSize;
for(int i=0;i<n;i++){
(*columnSizes)[i] = count(i);
rst[i] = (int*)malloc(sizeof(int)*(*columnSizes)[i]);
int k = 0;
for(int j = 0;j<numsSize;j++){
if(i&(1<<j)) // 对应位为1时放入结果集
rst[i][k++] = nums[j];
}
}
return rst;
}