Woodbury矩阵恒等式介绍

本文介绍了Woodbury矩阵恒等式,用于计算秩k校正的矩阵逆矩阵。通过公式推导,从简化版开始,逐步展示如何将单位矩阵设为I,并引入U=A-1X和V=CY。此外,当V、U为向量时,等式转化为Sherman-Morrison公式。同时,讨论了二项式逆定理和公式的拓展应用。
摘要由CSDN通过智能技术生成

写在前面:本文主要参考维基百科Woodbury matrix identity–wikipedia

原理的证明似乎没有提及。wiki百科原文只提了公式的拓展与应用。

一.公式概述

Woodbury矩阵恒等式,通过对原始矩阵的逆矩阵进行秩k校正,来计算某些矩阵的秩k校正的矩阵的逆矩阵。(也就是说该公式可以求逆矩阵)
公式如下:
Woodbury矩阵恒等式
其中A是n×n矩阵,C:k×k,U:n×k,V:k×n矩阵

二.简化版的公式推导

1.简化版的公式推导

简化上述公式,把A-1和C设为I(这个I就是单位矩阵E),简化版公式如下
在这里插入图片描述
为了将简化版公式恢复为原始公式——Woodbury矩阵恒等式。设U=A-1X,V=CY。
把单位矩阵,I分解,(I+P)-1可表示为,如下的形式1.

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值